Decidability of Code Properties

Henning Fernau and Klaus Reinhardt *
Wilhelm-Schickhard-Institut für Informatik,
Universität Tübingen,
Sand 13,
D-72076 Tübingen, Germany
and
Ludwig Staiger †
Institut für Informatik,
Martin-Luther-Universität Halle-Wittenberg,
Kurt-Mothes-Str. 1,
D-06120 Halle, Germany

Abstract

We explore the borderline between decidability and undecidability of the following question: “Let C be a class of codes. Given a machine \mathcal{M} of type X, is it decidable whether the language $L(\mathcal{M})$ lies in C or not?” for codes in general, ω-codes, codes of finite and bounded deciphering delay, prefix, suffix and bi(pre)fix codes, and for finite automata equipped with different versions of push-down stores and counters.

*E-mail: {fernau.reinhard}@informatik.uni-tuebingen.de
†E-mail: staiger@informatik.uni-halle.de
Contents

1. Introduction ... 3

2. Definitions ... 3
 2.1 Counter machines 4
 2.2 Codes .. 6

3. C-Chains .. 7

4. Decidability results 10

5. Undecidability results 11
 5.1 Blind Counters 11
 5.2 Other Cases ... 13

6. Summary and Prospects 16
1 Introduction

Surprisingly, there are very few results of the following kind:

"Let C be a class of codes. Given a device D (automaton or grammar) of some fixed type, is it decidable whether the language $L(D)$ defined by D is in class C or not?"

The monograph [BP85] contains almost no information concerning this question. Known results are surveyed in Sections 3 and 9 of [JK97] based on [JSY94].

In our paper, we aim to show a distinctively sharp boundary between the automaton classes with a decidable or undecidable C-code problem, respectively, for the following code classes C: codes in general, ω-codes [St86], codes of finite and bounded deciphering delay, prefix, suffix and bifix codes, because they form (aside from suffix codes) a natural decreasing chain of code classes. Moreover, according to Berstel and Perrin [BP85], p. 139, “the notion of deciphering delay appears at the very beginning of the theory of codes”. Furthermore, these code classes seem to be important for applications like the computation of Hausdorff dimension of language-defined fractals as proposed in [Fe94, FS98, St96].

The paper is structured as follows: in the next section, we present the definitions necessary for the understanding of this paper. In Section 3, so-called C-chains are introduced as a basis for several proofs in Section 5. In Section 4, our decidability results are collected, while Section 5 contains the undecidability results. Finally, we summarize our results in Table 1.

2 Definitions

For basics in automata theory, we refer the reader to [Be79, Ha78, HU79]. Especially, the notion of (deterministic) push-down automaton, (D)PDA for short, should be known, leading to the language classes (D)CF; if the (D)PDA is only allowed to make one turn of the push-down store during computation, we come to 1t(D)PDA, defining the language classes 1t(D)CF=(D)LIN. The regular languages are denoted by REG.

Furthermore, we obey the following conventions: \mathbb{Z} is the set of integers; \mathbb{N} is the set of natural numbers; $\text{sgn}(x)$ is the sign of integer x, i.e., $\text{sgn}(x) = 1$ if $x > 0$, $\text{sgn}(x) = -1$ if $x < 0$, and $\text{sgn}(0) = 0$; $\bar{0}$ is a multidimensional all-zero-vector. X^* is the free monoid over X, $e \in X^*$ denotes the empty word, $X^+ = X^* \setminus \{e\}$, \sqsubseteq denotes the prefix relation in X^*.

\footnote{A good coverage of the corresponding literature can be found in [Br92].}
2.1 Counter machines

Since definitions of counter automata are not standardized in the literature, we have to make the notions we use precise in this subsection, mostly following [Gr78].

A \(k \)-counter machine \(M = (Q, X, \delta, q_0, Q_f, k) \) consists of a finite set \(Q \) of states, a designated initial state \(q_0 \) a designated subset \(Q_f \) of final or accepting states, a finite input alphabet \(X \) and a finite transition relation

\[
\delta \subseteq Q \times (X \cup \{e\}) \times \{0, 1, -1\}^k \times Q \times \{0, 1, -1\}^k.
\]

A configuration \(c \) of \(M \) is a member of \(Q \times X^* \times \mathbb{Z}^k \). The set of configurations is denoted by \(C(M) \). Especially, \(c_0(w) = (q_0, w, \hat{0}) \) is the initial configuration for \(w \) and \(C_f = \{(e, 0)\} \) is the set of final configurations.

Observe that we require here without loss of generality that all counters are zero at the end of a computation, a feature which will become essential for the special cases we consider in the following.

If \((q, a, u_1, \ldots, u_k, q', x_1, \ldots, x_k) \in \delta \) and \((q, aw, y_1, \ldots, y_k) \) is a configuration of \(M \) with \(u_i = \text{sgn}(y_i) \) for \(1 \leq i \leq k \), then we write

\[
(q, aw, y_1, \ldots, y_k) \xrightarrow{M} (q', w_1 + y_1, \ldots, y_k + x_k).
\]

If \(a = e \), this is an \(e \)-move. \(\xrightarrow{M} \) is a relation on \(Q \times X^* \times \mathbb{Z}^k \). Its reflexive transitive closure is denoted by \(\xrightarrow{*M} \). The language accepted by \(M \) is

\[
L(M) = \{ w \in X^* : \exists c_f \in C_f(c_0(w) \xrightarrow{*M} c_f) \}.
\]

We consider the following special cases of counter machines \(M = (Q, X, \delta, q_0, Q_f, k) \):

- \(M \) is blind if for each \(q, q' \in Q \), \(a \in X \cup \{e\} \), and for all \(u_i, v_i, x_i \) in \(\{0, 1, -1\} \), it is true that

\[
(q, a, u_1, \ldots, u_k, q', x_1, \ldots, x_k) \in \delta \iff (q, a, v_1, \ldots, v_k, q', x_1, \ldots, x_k) \in \delta.
\]

(2.0)

In other words, a blind counter machine is unable to check the signs of its counters during a computation. Only at the end, the acceptance condition checks whether all counters are zero.

- \(M \) is partially blind if

1. \(\delta \subseteq Q \times (X \cup \{e\}) \times \{0, 1\}^k \times Q \times \{0, 1, -1\}^k \) and
2. for each \(q, q' \in Q \), \(a \in X \cup \{e\} \), and for all \(u_i, v_i, x_i \) in \(\{0, 1\} \) and for all \(x_i \) in \(\{0, 1, -1\} \), Eq. (2.0) is true.
So, a partially blind multi-counter machine may be viewed as a blind multi-counter machine which gets stuck should one of its counters decrease below zero.

- \(M \) makes one turn if for any counter \(i, 1 \leq i \leq k \), and any subcomputation
 \[
 (q_0, w_1, \bar{0}) \xrightarrow{q_1} (q_1, w_1, y_1, \ldots, y_k) \xrightarrow{q_2} (q_2, w_2, x_1, \ldots, x_k) \xrightarrow{q_3} (w_3, z_1, \ldots, z_k)
 \]
 we find \(x_i, y_i, z_i \geq 0 \) and, if \(y_i > x_i \), then \(x_i > z_i \).

- \(M \) is deterministic if for each \(q \in Q, a \in X \) and for all \(u_i \in \{0, 1, -1\} \), it is true that
 \[
 \left| \{(q, a, u_1, \ldots, u_k, q', x_1, \ldots, x_k) \in \delta \mid q' \in Q, x_i \in \{0, 1, -1\}\} \right| + \\
 \left| \{(q, e, u_1, \ldots, u_k, q', x_1, \ldots, x_k) \in \delta \mid q' \in Q, x_i \in \{0, 1, -1\}\} \right| \leq 1.
 \]

In such a way, we are brought to the following language classes:

- the family \([1t](D)BC\) of languages accepted by [one-turn] blind (deterministic) multi-counter machines;
- the family \([1t](D)PBC\) of languages accepted by [one-turn] partially blind (deterministic) multi-counter machines;
- we could, in addition, specify the number of counters in our notations by setting a numeral in front of \(C \), e.g., \(D1C \) is the family of deterministic one-counter languages.\(^2\)

We briefly recall three non-trivial facts on counter machines:

1. From the decidability of the reachability problem for Petri nets [Ko84, Ma84], the decidability of the emptiness problem for (partially) blind counter machines results, see Theorem 6 in [Gr78]\(^3\).

2. According to Minsky [Mi61, Mi71], cf. also Section 7.8 in [HU79], the halting problem for two-counter machines is undecidable, even if one takes D2C machines with only one accepting state whose counters never get below zero and to which is given the empty word as input. Such machines have a unique final configuration \(c_f \), i.e., \(C_f(e) = \{c_f\} \).

 Furthermore, we may assume w.l.o.g. that the machine never enters the start state \(q_0 \) and never leaves the final state \(q_f \) again. We will call such a machine a D2CA in normal form.

\(^2\)PB1C is called “restricted one-counter languages” in [Be79], and 1C is called “iterated counter languages” in [Ha78]. One-turn counter machines are called “reversal-bounded” in [Gr78].

\(^3\)The emptiness problem for PBLIND(\(n\)) is equivalent to the emptiness problem for PBLIND by adding an additional blank symbol replacing e-moves.
3. According to Greibach [Gr78], Theorem 2, the family \(BC \) of languages accepted by blind multi-counter machines coincides with the family \(1tC \) of languages accepted by one-turn multi-counter machines. The proof does not transfer, neither to the deterministic case nor to the case of a fixed number of counters. In fact,

\[
L := \{ w \in \{a, b\}^* : |w|_a = |w|_b \} \in DB1C,
\]

where \(|w|_x \) gives the number of occurrences of letter \(x \) in string \(w \). \(L \) cannot be accepted by one-counter machines which only make a finite number of turns.

4. Blind counter machines can be simulated by partially blind counter machines but not vice versa, see Theorems 3 and 4 in [Gr78].

The second fact will be the main tool for showing our undecidability results. In our constructions, we will use the quasi unary encoding \(\gamma(c) := q|z\# \) with \(z = 2^n \cdot 3^m \) for a configuration \(c = (q, n, m) \) of a 2C machine with empty input. “Quasi unary” means that except for the first letter \(q \in Q \) and the endmarker \(\# \) the codeword \(\gamma(c) \) is unary. Since there is only a finite number of states \(q \in Q \), a configuration \(c \) can be read, stored and compared to some previously stored encoded configuration by a counter automaton as well as by a one-turn push-down automaton. \(\gamma \) can be easily interpreted as a homomorphism mapping sequences of configurations to words over the finite alphabet \(Q \cup \{[,\#]\} \).

2.2 Codes

A language \(C \subseteq X^* \) is called code over \(X \) if for all \(n, m \in \mathbb{N} \) and all words \(x_1, \ldots, x_n; y_1, \ldots, y_m \in C \) the condition \(x_1 \cdots x_n = y_1 \cdots y_m \) implies \(n = m \) and \(x_i = y_i \) for all \(1 \leq i \leq n \).

A code \(C \) is called prefix code if for all \(x, y \in C, x \sqsubseteq y \) implies \(x = y \), i.e., the prefix relation restricted to \(C \) is the identity.

A code \(C \) is called suffix code if the suffix relation restricted to \(C \) is the identity.

A language \(C \) is called bifix code iff \(C \) is both a prefix and a suffix code.\(^4\)

2.1 Example. The language \(C_Q := \{q|z\# : q \in Q \land z \in \mathbb{N} \} \) containing the quasi unary encodings from above is a bifix code.

According to [BP85, DLLS94, St86], a code \(C \) has a deciphering delay \(m \geq 0 \) (m-d.d. for short) iff for all \(w, w' \in C \) the relation \(w \cdot v_1 \cdots v_m \sqsubseteq w' \cdot u \) where \(v_1, \ldots, v_m \in C \) and \(u \in C^* \) implies \(w = w' \). We say that a code \(C \) has bounded deciphering delay.

\(^4\)Such codes are named biprefix codes in [BP85].
(b.d.d. for short) provided C has m-d.d. for some $m \in \mathbb{N}$. Observe that C is a prefix code iff C has 0-d.d.

The following obvious lower bound to the deciphering delay is sometimes useful.

2.2 Property. (Lower Bound)

If $C \subseteq X^+$ is a code and there are words $w, w', v_1, \ldots, v_l \in C$ such that $w \neq w'$ and $w \cdot v_1 \cdots v_l \subseteq w' \cdot u$ for some $u \in C^*$ then C has a deciphering delay of at least $i + 1$.

A code C is said to have finite deciphering delay (f.d.d. for short), provided for every $w \in C$ there is an $m_w \in \mathbb{N}$ such that the relation $w \cdot v_1 \cdots v_m \subseteq w' \cdot u$ where $v_1, \ldots, v_m \in C$ and $u \in C^*$ implies $w = w'$. By $m_C(w)$ we denote the smallest value m_w, possible for $w \in C$.

A code C is called an ω-code, provided $\prod_{i=1}^{\infty} w_i = \prod_{i=1}^{\infty} v_i$ where $w_i, v_i \in C$, $i = 1, 2, \ldots$ implies $w_i = v_i$ for all $i = 1, 2, \ldots$.

It is known that every code of bounded deciphering delay is a code of finite deciphering delay, and a code of finite deciphering delay is an ω-code, whereas the converse is not true in both cases (cf. [St86]).

For codes of bounded deciphering delay we can prove the following.

2.3 Lemma.

A language $C \subseteq X^+$ is a code of deciphering delay m if and only if for all $w, w', v_1, \ldots, v_m, v'_1, \ldots, v'_l \in C$ where $j \leq m$ the relation $w \cdot v_1 \cdots v_m \subseteq w' \cdot v'_1 \cdots v'_j$ implies $w = w'$.

Proof. From the definition above, the necessity of our condition is immediate.

Assume now that C satisfies the condition of the lemma and that $w \cdot v_1 \cdots v_m \subseteq w' \cdot u$ where $w, w', v_1, \ldots, v_m \in C$ and $u \in C^*$. Let $u = v'_1 \cdots v'_j$ where j is assumed to be minimal, that is, $w \cdot v_1 \cdots v_m \nsubseteq w' \cdot v'_1 \cdots v'_{j-1}$ if $j \geq 1$.

If $j \leq m$ then the condition implies $w = w'$.

If $j > m$ then by the minimality of j we conclude from $w \cdot v_1 \cdots v_m \subseteq w' \cdot v'_1 \cdots v'_j$ that $w' \cdot v'_1 \cdots v'_m \subseteq w' \cdot v'_1 \cdots v'_{j-1} \subseteq w \cdot v_1 \cdots v_m$, whence again $w' = w$. \[\square\]

3 C-Chains

In this section, following an idea of Levenshtein (cf. [Le64] and also Section 2.2.1 of [LS77] or [St86]), we introduce *Levenshtein’s relation* \prec on X^* which useful in the study of codes. It describes the possibilities of double factorizations of code messages. For a subset $C \subseteq X^+$, define \prec as follows.

\[
\begin{align*}
w \prec_1 v & : \iff wv \in C, \\
w \prec_2 v & : \iff w \in C \cdot v \quad \text{and} \quad \prec := \prec_1 \cup \prec_2.
\end{align*}
\]
We consider C-chains, that is, sequences of the form
\[\Gamma := u_1 \prec_1 u_2 \prec_{k_1} u_3 \prec \ldots \prec_{k_{n-1}} u_n, \]
(3.0)

where $u_1 \in C$, $u_2 \neq e$ and $k_i \in \{1, 2\}$ for $i \geq 2$.5

We call a C-chain Γ nontrivial provided $n \geq 2$. Observe that for a nontrivial C-chain $\Gamma = u_1 \prec_1 u_2 \prec u_3 \prec \ldots \prec u_n$ we have $u_1 \subset u_1 \cdot u_2$ and $u_1, u_1 \cdot u_2 \in C$.

The following theorem shows a close connection between C-chains and double factorizations.

3.1 Theorem. Let $C \subseteq X^+$.

1. If there are families $(v_k)_{k=1}^i$ and $(w_k)_{k=1}^j$ of words $v_k, w_k \in C$ with $w_1 \neq v_1$ and $w_1 \cdots w_{j-1} \subseteq v_1 \cdots v_i \subseteq w_1 \cdots w_j$ then there is a C-chain $u_1 \prec_1 u_2 \prec u_3 \prec \ldots \prec u_{i+j}$ such that $\{u_1, u_1 \cdot u_2\} = \{v_1, w_1\}$, $v_1 \cdots v_i \cdot u_{i+j} = w_1 \cdots w_j$ and $|u_{i+j}| \leq |w_j|$.

2. If a sequence $(u_k)_{k=1}^n$, $n \geq 2$ is a C-chain $u_1 \prec_1 u_2 \prec u_3 \prec \ldots \prec u_n$ then there are words $v_1, \ldots, v_j, v_{i+1}, \ldots, v_i \in C$ where $w_1 \neq v_1$, $\{u_1, u_1 \cdot u_2\} = \{w_1, v_1\}$, $|u_n| \leq |w_j|$ and $i + j = n$ such that
\[v_1 \cdots v_i \cdot u_n = w_1 \cdots w_j \text{ and } |u_n| \leq |w_j|. \]

(3.1)

Proof. The proof is by induction on $n = i + j$. In both cases the assertion is obvious if $n = i + j \leq 2$.

1. Let $w_1 \cdots w_{j-1} \subseteq v_1 \cdots v_i \subseteq w_1 \cdots w_j$. We distinguish two cases:
 - If $w_1 \cdots w_{j-1} \subseteq v_1 \cdots v_{i-1} \subseteq w_1 \cdots w_j$ then, by the induction hypothesis, there is a C-chain $u_1 \prec_1 u_2 \prec u_3 \prec \ldots \prec u_{i+j-1}$ such that $\{u_1, u_1 \cdot u_2\} = \{v_1, w_1\}$ and $v_1 \cdots v_{i-1} \cdot u_{i+j-1} = w_1 \cdots w_j$. Define u_{i+j} via the equation $u_{i+j-1} = v_i \cdot u_{i+j}$. Then $u_{i+j-1} \prec_2 u_{i+j}$, and we can continue our C-chain to length $i + j$ satisfying the required properties.
 - In case $v_1 \cdots v_{i-1} \subseteq w_1 \cdots w_j \subseteq v_1 \cdots v_i$ using the induction hypothesis we obtain a C-chain $u_1 \prec_1 u_2 \prec u_3 \prec \ldots \prec u_{i+j-1}$ such that $w_1 \cdots w_{j-1} \cdot u_{i+j-1} = v_i \cdots v_j$ and $|u_{i+j-1}| \leq |v_i|$. Consequently, $u_{i+j-1} \subseteq w_j$, and defining u_{i+j} via the equation $u_{i+j-1} \cdot u_{i+j} = w_j$ we obtain the required prolongation $u_{i+j-1} \prec_1 u_{i+j}$ of our C-chain $u_1 \prec_1 u_2 \prec \ldots \prec u_{i+j-1}$.

2. Assume now that the assertion holds for arbitrary C-chains of length n and let $u_1 \prec_1 u_2 \prec u_3 \prec \ldots \prec u_n \prec u_{n+1}$ be a C-chain of length $n + 1$. According to our assumption to the initial part $u_1 \prec_1 u_2 \prec u_3 \prec \ldots \prec u_n$ we can find words $v_1, \ldots, v_i, w_1, \ldots, w_j \in C$ such that $v_1 \cdots v_i \cdot u_n = w_1 \cdots w_j$, $w_1 \neq v_1$, $\{u_1, u_1 \cdot u_2\} = \{w_1, v_1\}$, $|u_n| \leq |w_j|$ and $i + j = n$. Again we consider two cases:

5Sometimes we shall append the values $k_i \in \{1, 2\}$ for easier orientation.
In the same way as in Eq. (3.0) we can define infinite ω-chains. Thus, a proper ω-code iff there is no infinite ω-chain.

If $\mathbf{u}_n \preceq_1 \mathbf{u}_{n+1}$, that is, $\mathbf{u}_n \cdot \mathbf{u}_{n+1} \in C$ we set $\mathbf{v}_{i+1} := \mathbf{u}_n \cdot \mathbf{u}_{n+1}$ and obtain $\mathbf{w}_1 \cdots \mathbf{w}_j \cdot \\
\mathbf{u}_{n+1} = \mathbf{v}_1 \cdots \mathbf{v}_{i+1}$.

If $\mathbf{u}_n \preceq_2 \mathbf{u}_{n+1}$ there is a word $\mathbf{v}_{i+1} \in C$ such that $\mathbf{u}_n = \mathbf{v}_{i+1} \cdot \mathbf{u}_{n+1}$, and we obtain $\mathbf{v}_1 \cdots \mathbf{v}_{i+1} \cdot \mathbf{u}_{n+1} = \mathbf{w}_1 \cdots \mathbf{w}_j$.}

Theorem 3.1 makes the following equivalences obvious, cf. also [BP85, St86].

3.2 Property. (The Sardinas-Patterson Theorem) C is a code iff there is no non-trivial C-chain terminating with a word $\mathbf{u}_n \in C$.

If a C-chain $\Gamma = \mathbf{u}_1 \preceq_1 \mathbf{u}_2 \preceq \cdots \preceq \mathbf{u}_n$ terminates with $\mathbf{u}_n \in C$ then we may proceed by adding $\mathbf{u}_i \preceq \mathbf{u}_{i+1} = e \preceq \mathbf{u}_i \preceq \mathbf{u}_{i+1} = e \preceq \cdots$. In general, a C-chain contains the empty word $\mathbf{u}_i = e$ if and only if its preceding entry \mathbf{u}_{i-1} is in C. In the sequel, we will refer to C-chains not containing the empty word as proper.

We call a proper C-chain Γ maximal provided Γ cannot be extended to a proper C-chain.

In the same way as in Eq. (3.0) we can define infinite C-chains. Thus, a proper infinite C-chain is always maximal.

3.3 Property. C is an ω-code iff there is no infinite ω-chain.

Let $\ell_C(\mathbf{w})$ denote supremum over the lengths of all C-chains starting with $\mathbf{w} \preceq_1 \mathbf{u}_2$ or with $\mathbf{u}_1 \preceq_1 \mathbf{u}_2$ where $\mathbf{w} = \mathbf{u}_1 \cdot \mathbf{u}_2$.

If $m_C(\mathbf{w}) > i$ then there are $\mathbf{w}, \mathbf{w}', \mathbf{v}_1, \ldots, \mathbf{v}_i \in C$, $\mathbf{w} \not\preceq \mathbf{w}'$ and a word $\mathbf{u} \in C^*$ such that $\mathbf{w} \cdot \mathbf{v}_1 \cdots \mathbf{v}_i \subseteq \mathbf{w}' \cdot \mathbf{u}$. According to Theorem 3.1 we have a C-chain starting with $\mathbf{w} \preceq_1 \mathbf{u}_2$ or with $\mathbf{w}' \preceq_1 \mathbf{u}_2$ where $\mathbf{w} = \mathbf{w}' \cdot \mathbf{u}_2$ of length $\geq i + 2$. Thus, $\ell_C(\mathbf{w}) \geq i + 2$, and we obtain the following.

3.4 Property. If $C \subseteq C^*$ is a code then $\forall \mathbf{w}(\mathbf{w} \in C \rightarrow \ell_C(\mathbf{w}) \geq m_C(\mathbf{w}) + 1)$.

This yields a connection to codes having finite deciphering delay.

3.5 Property. Let $\ell_C(\mathbf{w}) < \infty$ for every $\mathbf{w} \in C$. Then C has f.d.d.

As we shall see in the proof of Theorem 5.11, the converse is not true.

If C has m.d.d., then, in view of Lemma 2.3, we can derive a tighter relationship.

3.6 Property. If C has deciphering delay m then $\ell_C(\mathbf{w}) \leq 2m + 1$ for every $\mathbf{w} \in C$, and if $\ell_C(\mathbf{w}) \leq n$ for every $\mathbf{w} \in C$ then C has deciphering delay $n - 1$.

Proof. From Property 2.2 we know that in Eq. (3.1) $i \leq m$ and $j \leq m + 1$, whence $n = i + j \leq 2m + 1$.

The bound $m \leq \sup \{ \ell_C(\mathbf{w}) - 1 : \mathbf{w} \in C \}$ is derived above in Property 3.4. \qed
4 Decidability results

In [Ha78], p. 355, Problem 7, it was mentioned that for DCFs the property to be a prefix code is decidable, whilst the prefix code property is known to be undecidable for CFs, see [Ha78], p. 262, Problem 6. Although this result seems to be folklore, we give an outline of the proof in the following.

4.1 Theorem. It is decidable for a DCF $L \subseteq X^+$ whether L is a prefix code.

Proof. Let M be a DPDA accepting L. Modify M as follows in order to obtain a DPDA M' such that $L(M') = \emptyset$ iff L is a prefix code: M' has two copies of the set of states of M; it starts working like M on the first copy, switching deterministically to the second copy when first reaching a final state of M; then, it proceeds to work on the second copy like M; the accepting states of M in the second copy are the accepting states of M'.

Obviously, the previous construction is applicable to all deterministic machine models with a decidable emptiness problem, like deterministic stack automata [GGH67], deterministic set automata [LR96], etc.6

Theorem 5.8 below shows that we cannot expect to sharpen the previous theorem even from 0-d.d. decidability to 1-d.d. decidability. For (partially) blind counters, however, we obtain an even stronger result. This result is interesting also in the following respect.

Although, in view of Theorems 5.1 and 5.9, we cannot decide whether a language $L \subseteq X^+$ accepted by a partially blind counter automaton is a code or a code of bounded deciphering delay, we can decide whether it has a given deciphering delay.

4.2 Theorem. For every fixed $m \geq 0$, it is decidable for a PBC $L \subseteq X^+$ whether L is a code of deciphering delay m or not.

Proof. Let $M = (Q, X, \delta, q_0, \{q_f\}, k)$ be a BCA. (Since M is nondeterministic, we may assume that it has only one accepting state q_f.) First we build an automaton A as the marked union of $m + 1$ copies of M using all disjoint counters and connecting them by adding e-moves $(q_{f,i}, e, \hat{0}, q_{0,i+1})$ from the ith copy of q_f to the $i + 1$st copy of q_0 for all $0 \leq i \leq m$. Additionally we add a new final state \hat{q}_f and the transitions $(q_{f,m}, e, \hat{0}, \hat{q}_f)$ and $(\hat{q}_f, a, \hat{0}, \hat{q}_f)$. If the finite control is within a state of the ith copy of Q, then it may only increment or decrement counters from the ith copy of the k counters of M. Thus A has $k(m + 1)$ counters, starts in $q_{0,0}$

\[6\] Conversely, if for a class of languages L closed under union with finite languages and concatenation from the left with finite languages, the property of being a prefix code for $L \in L$ is decidable, then also the emptiness problem for L is decidable, see Section 6.
Decidability of Code Properties

and reaches \(q_{f,m} \) iff it reads a word in \(L^{m+1} \) and finally \(q_f \) iff it reads a word in \(L^{m+1}X^* \).

Consider the canonical product automaton \(M' = A \times A \) with \(2k(m+1) \) counters. \(M' \) is obtained by enclosing an additional finite control, which ensures that the use of the transition containing \((q_{f,0}, e, \bar{0}, q_{0,1}) \) in the first component and the transition containing \((q_{f,0}, e, \bar{0}, q_{0,1}) \) in the second component is separated by a non-\(e \)-transition. Now, \(L(M') \) is empty iff for all \(w, w' \subseteq L, w \neq w' \), \(wL^mX^* \cap w'L^mX^* \) is empty iff \(L \) has \(m \)-d.d., cf. Lemma 2.3.

The previous construction should work for all automata classes \(A \) with a decidable emptiness problem, if \(A \) is closed under the product automaton construction.

4.3 Corollary. It is decidable for a PBC \(L \subseteq X^+ \) whether \(L \) is a prefix code or whether \(L \) is a suffix code or whether \(L \) is a bifix code.

In fact, the last argument should work for all classes \(A \) of nondeterministic automata (like PBC) with “reasonable” storage types: such classes are closed under mirror image, since nondeterminism allows to “trace back” the computation of a machine \(M \) on a word \(w = a_1 \ldots a_n \) by another machine \(M' \) on the mirror word \(w^R = a_n \ldots a_1 \).

We remark that the preceding three results are also valid in case of languages \(L \) containing the empty word. For such languages, the answer has to be “no”, since no language containing the empty word is a code. Since \(e \in L(A) \)? can be tested algorithmically for all automata classes considered in this section, we can cope with arbitrary languages \(L \subseteq X^* \), too.

Now, we turn to several undecidability results.

5 Undecidability results

5.1 Blind Counters

The proofs in this subsection rely on the properties listed in Section 3.

5.1 Theorem. Let \(L \in \mathbf{1tDB1C} \). Then, the property “\(L \) is a code” is undecidable.

Proof. Let \(M = \langle Q, \delta, q_0, \{ q_f \} \rangle \) with \(q_0 \neq q_f \) be a D2CA with empty input in normal form. We use the quasi unary encoding for the configurations of \(M \) and
define our language \(L \subseteq \left(Q \cup \{\#, |\} \right)^* \) as follows:

\[
L := L_0 \cup L_1 \cup L_f, \quad \text{where}
L_0 := \{q_0\#\} = \{\gamma(c_0)\},
L_1 := \{\gamma(c)\gamma(c') : c, c' \in C(\mathfrak{M}) \land c \vdash \gamma c'\}
L_f := \{q_f\#\} = \{\gamma(c_f)\}.
\]

It is readily seen that \(L_1 \cup L_f \) is a prefix code and that \(L \in 1tDB1C \).\(^7\)
Since the words in \(L_1 \) link the configurations of \(\mathfrak{M} \) to their successor configurations, and since \(L_1 \cup L_f \) contains exactly one word with prefix \(q_0\# \), it is immediate that \(L \) admits exactly one nontrivial maximal \(L \)-chain \(\Gamma \):

\[
\Gamma = q_0\# \prec_1 q_1 w_1\# \prec_1 q_2 w_2\# \prec_1 \ldots,
\]

where \((q_i, n_i, m_i) \vdash \mathfrak{M} (q_{i+1}, n_{i+1}, m_{i+1}) \) when \(w_j \) is the word consisting of \(2^{n_j} \cdot 3^{m_j} \) letters \(\cdot \). Thus \(L \) is a code iff this \(L \)-chain does not end with \(q_f\# \), that is, the computation of \(\mathfrak{M} \) does not halt. The previous result strengthens the undecidability of the code property shown for linear languages in [JK97].

With a slight modification of the construction of Theorem 5.1 we obtain the following.

5.2 Theorem. For languages \(L \in 1tDB1C \), it is undecidable whether \(L \) is an \(\omega \)-code, even if we suppose \(L \) to be a code.

Proof. The language \(C := L_0 \cup L_1 \), where \(L_0 \) and \(L_1 \) are defined in the proof of Theorem 5.1, is a code with exactly one infinite \(C \)-chain iff the machine \(\mathfrak{M} \) does not halt. Otherwise, there is only one finite maximal \(C \)-chain of length greater than 1. \(\square \)

5.3 Corollary. For languages \(L \in 1tDB1C \), it is undecidable whether \(L \) is a code of finite (bounded) deciphering delay, even if we suppose \(L \) to be a code.

Proof. The code \(C \) constructed in the proof of Theorem 5.2 is an \(\omega \)-code iff \(C \) has finite deciphering delay iff \(C \) has bounded deciphering delay. \(\square \)

\(^7\)Details work like in the proof of Lemma 5.1 in [Re94]. The counter is used to check a multiplication by 2 or 3 simulating an increment by reading \(|| \) or \(||| \) in the second configuration for every letter \(| \) in the first configuration and vice versa for a division simulating a decrement. Divisibility by 2 or 3 simulating a zero-test can be checked already by the finite control.
5.2 Other Cases

In the case of nondeterministic one-counter and linear languages we obtain a series of results concerning non-decidability of questions related to the decidability delay of codes, thereby sharpening Theorem 9.5 of [JK97] in parts.

We start with a general construction. Let, as above, $M = (Q, \delta, q_0, \{q_f\}$ be a deterministic two-counter machine with empty input. We can assume $q_0 \neq q_f$ and M to be in normal form. With the help of the regular language $C_0 := \gamma(c_0c_0) \{ \gamma(c) : c \in C(M) \setminus \{c_0, c_f\}\}$, we define the following deterministic one-counter and linear languages derived from the quasi-unary encoding of the configurations of M (Observe that C_0 is a bifix code.):

\[
\begin{align*}
C_1(M) & := \gamma(c_0) \{ \gamma(cc') : c, c' \in C(M) \land c \vdash_M c' \} \gamma(c_f) \cap C_0 \\
C_2(M) & := \gamma(c_0c_0) \{ \gamma(cc) : c \in C(M) \} \gamma(c_f) \cap C_0 \\
L_1(M) & := \{ \gamma(c_n c_{n-1} \ldots c_2c_1) \gamma(c_0c_1'c_2' \ldots c_{n-1}'c_n') : n \in \mathbb{N} \land c_i \in C(M) \land c_i \vdash_M c_i' \text{ for } 1 \leq i \leq n \} \\
L_2(M) & := \{ \gamma(c_n c_{n-1} \ldots c_2c_1) \gamma(c_1c_2 \ldots c_{n-1}c_n) c_f) : n \in \mathbb{N} \land c_i \in C(M) \text{ for } 1 \leq i \leq n \}
\end{align*}
\]

One easily observes that $C_1(M)$ and $C_2(M)$ are deterministic one-counter languages, whereas $L_1(M)$ and $L_2(M)$ are deterministic linear languages.

Since M is a deterministic two-counter machine with empty input in normal form, the following lemma is valid.

5.4 Lemma. The languages $C_1(M) \cup C_2(M)$ and $L_1(M) \cup L_2(M)$ are bifix codes.

The following lemma is crucial for our non-decidability results.

5.5 Lemma. The deterministic two-counter machine with empty input in normal form M halts iff $C_1(M) \cap C_2(M) \neq \emptyset$ iff $L_1(M) \cap L_2(M) \neq \emptyset$.

Proof. We prove only that M halts iff $L_1(M) \cap L_2(M) \neq \emptyset$, the proof of the other equivalence being similar.

We have $w = \gamma(c_n c_{n-1} \ldots c_2c_1) \gamma(c_0c_1'c_2' \ldots c_{n-1}'c_n') \in L_1(M) \cap L_2(M)$ if and only if first $c_1 = c_0, c_{i+1} = c_i'$ for $1 \leq i < n$ and $c_n = c_f$, because $w \in L_2(M)$, and then $c_0 \vdash_M c_1 \vdash_M \cdots \vdash_M c_n \vdash_M c_f$, because $w \in L_1(M)$. This observation makes the assertion obvious.

The developed apparatus enables us to prove the results.

5.6 Theorem. It is undecidable for $L \in 1C$ (or $L \in LIN$) whether L is a prefix code, even if we know that L is a suffix code and has deciphering delay 1.
Proof. Again, we simulate a D2C machine M with empty input in normal form using quasi unary encoding. Let

$$L := C_1(M) \cup C_2(M) \#,$$

where $C_1(M), C_2(M)$ are defined above. Obviously, $L \subseteq C_0 \cup C_0\#$ is a suffix code. By Lemma 5.4 $C_1(M) \cup C_2(M)$ is a prefix code, hence a word $w_1 \in L$ can only be a prefix of a word $w_2 \in L$ iff $w_1 \in C_1(M)$, $w_2 \in C_2(M)\#$ and $w_2 = w_1\#$, that is, iff $C_1(M) \cap C_2(M) \neq \emptyset$. Thus L is a prefix code iff M halts, and the latter is undecidable.

The relation $w_2 = w_1\#$ results in an L-chain $w_1 \prec_1 \#$ which has no continuation. Thus, in view of Property 3.6, L has 1-d.d. (and is a suffix code).

The proof for LIN proceeds analogously using $L := L_1(M) \cup L_2(M)\#$. \[\]

For suffix codes, we have a stronger result using a simple modification of the previous construction.

5.7 Theorem. It is undecidable for a $L \in D1C$ (or $L \in DLIN$) which is a prefix code whether L is a suffix (and hence bifix) code.

Proof. Let M be a D2CA with empty input in normal form. The language

$$L := C_1(M) \cup S C_2(M)$$

is a prefix code and in D1C. Since according to Lemma 5.4 $C_1(M) \cup C_2(M)$ is a suffix code, a word $w_1 \in L$ is a suffix of $w_2 \in L$ iff $w_1 \in C_1(M)$, $w_2 \in S C_2(M)$ and $w_2 = S w_1$, that is $w_1 \in C_1(M) \cap C_2(M)$.

Similarly, the linear case can be treated. \[\]

The undecidability results for linear languages proved in the preceding two theorems are already shown in [JK97], Section 9, using constructions based on Post’s correspondence problem.

Again, simple modifications yield the next theorem:

5.8 Theorem. For $L \in D1C$ (or $L \in DLIN$), it is undecidable whether L is a code of deciphering delay $m \geq 1$, even if we suppose that L has $m + 1$-d.d.

Proof. Let M be a D2CA with empty input in normal form and consider

$$L := C_1(M) \cup S^m C_2(M) \# \cup \{\$\}.$$

It is obvious that we have only the following L-chains of length $m + 1$:

$$\$ \prec_1 S^{m-1} w \# \prec_2 S^{m-2} w \# \prec_2 \ldots \prec_2 w \# \text{ where } w \# \in C_2(M)\# \quad (5.8)$$

\[\]
corresponding to $\$ \cdot \$^m \cdot \$^w \# \; \text{for} \; w \in C_2(\mathcal{M})$. Thus Property 2.2 shows that L has at least deciphering delay m.

Moreover, L-chains of length $m+2$, $\$ \prec_1 \$^m \cdot \$^w \# \prec_2 \$^m \cdot \$^w \# \prec_2 \cdots \prec_2 \$ \prec_2 \$^w \#$, exist iff $v \subseteq w#$ for some $v \in C_1(\mathcal{M})$. Other L-chains longer than the ones in Eq. (5.8) do not exist. In view of Lemma 5.4, the condition $v \subseteq w#$ for some $v \in C_1(\mathcal{M})$ is equivalent to $v \in C_1(\mathcal{M}) \cap C_2(\mathcal{M})$. Thus L has $(m+1)$-d.d. but not m-d.d. iff $C_1(\mathcal{M}) \cap C_2(\mathcal{M}) \neq \emptyset$ iff \mathcal{M} halts.

In order to meet the 1-turn restriction, for $L \in \text{DLIN}$ we use again the languages $L_1(\mathcal{M})$ and $L_2(\mathcal{M})$:

$$L := \ F(\mathcal{M}) \cup \$^m L_2(\mathcal{M}) \# \cup \{\$\},$$

and the proof proceeds in the same way as for the one-counter case.

Now we turn to the undecidability of the bounded delay property.

5.9 Theorem. For languages $L \in 1tDB1C$ it is undecidable whether L has b.d.d., even if we suppose L to have f.d.d.

Proof. In order to guarantee that L has finite deciphering delay, we change the construction in the proof of Theorem 5.2 as follows: we encode the configuration (q,n,m) of \mathcal{M} aiming to allow at most t further steps as $\gamma^t(q,n,m) := q^t \#$ with $z = 2^n \cdot 3^m \cdot S^t \cdot u$ and define $C \subseteq (Q \cup \{\#,\})^*$ in the following way:

$$C := \ F_0 \cup L_1, \quad \text{where}$$

$$L_0 := \{q_0 \gamma^{s \#} \cdot u : u \text{ is not divisible by 2, 3 or 5}\},$$

$$L_1 := \{\gamma^t(q,n,m) \gamma^t(q',n',m') : q' \neq q_f \wedge (q,n,m) \vdash_{\mathcal{M}} (q',n',m') \wedge t \geq 1\}$$

The deciphering delay of a word in C is determined by the t in the first encoding, so that C has f.d.d. If and only if \mathcal{M} halts after at most s steps when having started from an arbitrary configuration, the deciphering delay is bounded by s, such that C has b.d.d. in that case.

In [St86], we described a code which has a finite, but not bounded deciphering delay. This code is, however, not context-free, let alone 1tDB1C. Moreover, it was shown there that every regular code of finite deciphering delay also has bounded deciphering delay. As a corollary to Theorem 5.9 we discover even 1tDB1C languages which are codes of finite, but not bounded deciphering delay.

For the sake of simplicity we provide an example which does not refer to the machine construction in the proof of Theorem 5.9.

5.10 Example. Let $X := \{a,b\}$ and $C = a \cdot b^s \cdot a \cup \{ab^{n+1}a : n \in \mathbb{N}\} \cup \{b^{n+1}ab^p a : n \in \mathbb{N}\}$. Then $C \in 1tDB1C$ and is a code of finite but unbounded deciphering delay.
The last theorem proves the remaining undecidability result.

5.11 Theorem. For languages $L \in 1tDB1C$ it is undecidable whether L is a code of finite (bounded) deciphering delay, even if we suppose L to be an ω-code.

Proof. Simply alter the proof of Theorem 5.9 as follows. Define

$$L_0 := \{q_0\} \cup \{|^5u\# : u \text{ is not divisible by } 2, 3 \text{ or } 5\}.$$

If M does not halt, this may result in arbitrarily long sequences of codewords $w_i, v_i \in L_1$ and $x \in \{|^5u\# : u \text{ is not divisible by } 2, 3 \text{ or } 5\}$ such that $q_0xw_1w_2\ldots \subseteq v_1v_2\ldots$ but no infinite sequence, because x gives a bound for its length.

In the preceding proof, the word $q_0 \in L_0$ has $\ell_{L_0}(q_0) = \infty$ regardless whether the code L_0 has f.d.d. or not. This shows that the converse of Property 3.5 is not valid.

6 Summary and Prospects

Table 1: D stands for determinism, N for nondeterminism, d for decidable, u for undecidable and t for trivial; arrows indicate how (un)decidability results trivially propagate. When writing m-d.d. we assume $m \geq 1$.

<table>
<thead>
<tr>
<th>Question</th>
<th>Condition</th>
<th>CF</th>
<th>LIN</th>
<th>IC</th>
<th>PBC</th>
<th>1tB1C</th>
<th>REG</th>
</tr>
</thead>
<tbody>
<tr>
<td>code</td>
<td>-</td>
<td>N</td>
<td>N</td>
<td>D</td>
<td></td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>ω-code</td>
<td>code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>← u5.2</td>
<td>d</td>
</tr>
<tr>
<td>f.d.d.</td>
<td>code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>← u5.3</td>
<td>d</td>
</tr>
<tr>
<td>f.d.d.</td>
<td>ω-code</td>
<td></td>
<td></td>
<td></td>
<td>← u5.11</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>b.d.d.</td>
<td>code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>← u5.3</td>
<td>d</td>
</tr>
<tr>
<td>b.d.d.</td>
<td>f.d.d.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>← u5.9</td>
<td>t</td>
</tr>
<tr>
<td>m-d.d.</td>
<td>$(m+1)$-d.d.</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Prefix</td>
<td>-</td>
<td>u</td>
<td>u</td>
<td>d</td>
<td></td>
<td>← u5.8</td>
<td></td>
</tr>
<tr>
<td>Prefix</td>
<td>1-d.d.</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suffix</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>← u5.7</td>
<td></td>
</tr>
<tr>
<td>Suffix</td>
<td>Prefix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>← u5.7</td>
<td></td>
</tr>
<tr>
<td>Suffix</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 summarizes the results on the (un-)decidability status of code properties for various language classes. As regards the positive decidability results for
regular languages, proofs can be found in Section 1.3 of [BP85] regarding the decidability of the code property, in [DLLS94] concerning the decidability of the ω-code and f.d.d. (or, here equivalently, the b.d.d.) property. Moreover, it was shown in [DLLS94, St86] that a regular code has f.d.d. iff it has b.d.d., so that one question becomes trivial.

It would be nice to know more about the (time or space) complexities of the decidable code properties; only the finite and regular code problems have received some attention until now [Li90, Ry86], although complexity questions have been explicitly raised in [BP86]. Let us remark as an example that the prefix code problem is just as hard as the emptiness problem for say (P)BC, since L is empty iff $\{a\} \cup \{aa\}L$, $a \in X$ is a prefix code, cf. also footnote 6. Moreover, the decision algorithm for DCF explained in Theorem 4.1 is much simpler than the algorithm for (P)BC given in Theorem 4.2 in terms of complexity.

Finally, there are lots of other code classes, see, e.g., [JK97], for which it is still an open question to determine the borderline between the decidability and undecidability of the corresponding code class problems. Associated decidability questions are discussed in [Rs88].

Acknowledgment

We gratefully acknowledge discussions with our colleagues U. Hertrampf, P. Kadau and R. Stiebe and the useful comments of the referees.

References

