The current study investigated the effects of intragroup interaction and cohesion on intergroup bias in a minimal group setting. As expected, interacting groups displayed a stronger intergroup bias than did individual group members acting in isolation. Moreover, there was a tendency for cohesive groups to show more intergroup bias than did groups formed on an ad hoc basis. Additional analyses showed that while groups and individuals did not differ in their treatment of the ingroup, groups discriminated against outgroup members more strongly than did individually acting group members. The findings are discussed with respect to their implications for understanding the differences in intergroup bias between groups, whose members interact, and individually acting group members.

Keywords: cohesion, intergroup bias, intergroup relations, minimal group paradigm, social discrimination

Research on intergroup relations has consistently produced evidence for the intergroup bias, the more favorable evaluation or treatment of one’s ingroup relative to an outgroup in cognitive, attitudinal, and behavioral terms (for a recent review, see Hewstone, Rubin, & Willis, 2002). The mere assignment of individuals to groups is sufficient to produce this bias (Tajfel, Billig, Bundy, & Flament, 1971). Despite extensive research, as Mullen, Brown, and Smith (1992) suggested, there is still a need to identify moderating factors that weaken or strengthen the intergroup bias. For example, little is known about potential moderating effects of intragroup factors (for an exception, see Gaertner & Schopler, 1998).

Author’s note
Address correspondence to Dr. Lars-Eric Petersen, Martin-Luther-Universität Halle-Wittenberg, Institut für Psychologie, Sozial- und Organisationspsychologie, 06099 Halle (Saale), Germany [email: l.petersen@psych.uni-halle.de]
The purpose of this study is to address this gap by investigating the potential moderating effects of intragroup interaction and cohesion on the allocation of resources to ingroup and outgroup members in a minimal group setting. The remainder of this introduction provides a brief review of research on the intergroup bias, before we turn to our hypotheses that intragroup interaction and group cohesion would strengthen the intergroup bias.

Intergroup bias

While numerous explanations have been offered for the intergroup bias, two prominent theoretical perspectives have been social identity theory and self-categorization theory. Briefly stated, according to social identity theory (e.g. Hogg & Abrams, 1988; Tajfel, 1982; Tajfel & Turner, 1986; Turner, 1982), (1) individuals identify themselves with groups (even trivial groups); and, (2) if individuals identify with a certain group, the need to maintain positive self-esteem leads them to favor their group (i.e. the ingroup) over other groups (i.e. outgroups). Turner (1987) proposed self-categorization theory as a broader theory, from which social identity theory can be derived. Self-categorization theorists propose that factors that enhance the salience of ingroup–outgroup categorizations increase perceptual differences between ingroup and outgroup identities and also lead to heightened perceptions of the similarity, equivalence, and interchangeability of ingroup members’ identities. As a result, ingroup members develop depersonalized self-perceptions of the stereotypical dimensions that define ingroup membership. This depersonalization—the change from a more personal to a more social identity—is seen as the basic process underlying group phenomena such as social stereotyping, social influence, the emergence of social norms, and intergroup biases.

The classic research design to study the intergroup bias has been the minimal group paradigm (MGP) (Tajfel, 1970; Tajfel et al., 1971). In this paradigm, participants are randomly assigned to one of two groups and led to believe that their assignments to groups are based on trivial criteria. Participants subsequently perform a resource allocation task, in which they distribute rewards or punishments among other participants, of whom they only know their group membership. In Tajfel et al.’s seminal research, boys, who had been categorized into two groups seemingly on the basis of their preferences for Klee versus Kandinsky paintings (Experiment 2), favored members of their new ingroup in the resource allocation task, thus showing a behavioral intergroup bias.

Over the last three decades, researchers have employed numerous variations of the MGP. These variations allowed examination of various antecedents of intergroup biases, such as differences in group status and group size (e.g. Otten, Mummendey, & Blanz, 1996; Reichl, 1997). They also included different operationalizations of intergroup biases, such as the evaluation of group products and performances (Wagner, Lamper, & Syllwasschy, 1986) or distribution of positive and negative resources (Mummendey, Otten, & Blanz, 1994). Finally, researchers have varied the MGP procedures. Hartstone and Augustinos (1995), for example, formed three minimal groups, and Farsides (1993) as well as Petersen and Blank (2001, 2003) had small groups perform the resource allocation task.

Our research is another variation of the MGP, addressing the roles of intragroup interaction and cohesion for the behavioral intergroup bias. Ingroup members will perform the resource allocation task either (a) individually (as in the classic MGP research); (b) jointly with other ingroup members in an ad hoc group; or (c) jointly with other ingroup members in a cohesive group. We expect to replicate the finding of an intergroup bias in our study. In the next sections, we will discuss how intragroup interaction and cohesion may enhance intergroup biases.

Intragroup interaction and intergroup bias

In Gaertner and Schopler’s (1998) study on the effects of intragroup interaction on intergroup
bias, group members who had interacted with fellow group members subsequently treated ingroup members more favorably when assigning resources than did group members who had not interacted with fellow group members. Gaertner and Scholper argued that intragroup interaction led to stronger perceptions of ingroup entitativity (i.e. the perception of the ingroup as one entity), which, in turn, led to ingroup favoritism. They, however, also discussed the role of self-categorization processes for their findings of intergroup bias. Consistent with self-categorization theory, group members might have categorized themselves and others in terms of group prototypes (e.g. Turner, 1985). More specifically, because of their interaction with other ingroup members, group members might have perceived increased social attraction to other ingroup members in form of a depersonalized ingroup prototype (cf. Hogg, 2001), leading them to treat ingroup members more favorably than did ingroup members who had not interacted with fellow group members.

Research on the group polarization effect also implies that intragroup factors might enhance intergroup bias. The group polarization effect refers to a shift in attitudes that enhances the distinction between ingroup and outgroup (e.g. Abrams, Wetherell, Cochrane, Hogg, & Turner, 1990). Most of the research on group polarization has examined the informational and normative social influences that occur in group discussions, but these influences might at least partially operate through social identification and self-categorization processes (Brewer & Brown, 1998). In support of the role of social identification processes, Mackie (1986) found that participants adopted more polarized attitudes after listening to a taped group discussion only when the discussants were identified as ingroup members. Moreover, Hogg, Turner, and Davidson (1990) found that the direction of group polarization was affected by the ingroup’s social comparative context (i.e. the outgroup). For example, when participants believed that the outgroup held a risky position, they polarized toward a more cautious position. In sum, the above reviewed research suggests that intragroup processes can increase intergroup bias. Hence, in our study we expect that groups will show a greater intergroup bias than will individuals.

Cohesion and intergroup biases

As mentioned above, Gaertner and Scholper (1998) had discussed the potential role of self-categorization processes and social attraction for enhanced intergroup bias in interacting groups. The idea that social attraction underlies cohesion was introduced by Hogg (1987, 1992, 1993), who argued that cohesion was an interindividual attitude derived from depersonalized liking on the basis of group prototypicality, which is generated by self-categorization. As Hogg and Hains (1996) stated, social attraction-based cohesion produces ‘through depersonalization, a constellation of effects that includes intragroup conformity, intergroup differentiation, stereotypic perception, ethnocentrism, and positive intermember attitude’ (p. 295). Furthermore, Hogg (1992) suggested cohesion effects on intergroup bias.

To date, while voluminous literature documents the importance of cohesion as an intragroup phenomenon (e.g. its effects on group productivity), few studies have empirically examined the effects of cohesion on intergroup bias. An early study by Dion (1973) produced mixed results: highly cohesive and less cohesive groups did not differ significantly in their treatment of outgroups (i.e. cohesion did not predict behavioral intergroup bias). Highly cohesive groups, however, evaluated outgroup members less positively than did less cohesive groups, indicating an attitudinal intergroup bias. Other studies that measured but did not manipulate cohesion provided preliminary evidence for cohesion effects on intergroup bias. For example, Bettencourt, Charlton, and Kernahan (1997, Study 2) found that increased cohesion was associated with more favorable evaluations of the ingroup and preferential treatment of the ingroup in a reward allocation task (see also Jackson & Smith, 1999). On the basis of the above reviewed arguments and initial empirical findings, we expect to find an effect of group cohesion on behavioral intergroup bias.
Overview of the current study

This study aims to establish that intragroup interaction and cohesion enhance behavioral intergroup biases, using a modified version of the MGP. Reported below are the methods and results of a study designed to test the following hypotheses:

H1: In a minimal group setting, more resources will be allocated to ingroup members than to outgroup members.

H2: The main effect of H1 will be modified by an interaction effect, such that groups will more strongly favor other ingroup members over outgroup members in resource allocation decisions than will individual group members acting in isolation.

H3: The main effect of H1 will be modified by an interaction effect, such that cohesive groups will more strongly favor ingroup members over outgroup members in resource allocation decisions than will non-cohesive groups.

Method

Research design and participants

A 2 x 3 factorial design with one within-subjects variable (ingroup/outgroup) and one between-subjects variable (individual decision, decision in an ad hoc group, and decision in a cohesive group) was used. The procedure was highly similar to the minimal group paradigm (for a detailed description, see, for example, Tajfel et al., 1971), whereby participants’ allocations of rewards to ingroup and outgroup members served as the dependent variable. The participants were 175 male and female German high school students between the ages of 14 and 18, who volunteered to participate in exchange for a minor monetary remuneration.

Independent variables

The within-subjects variable ‘ingroup/outgroup’ had two levels, whose order we randomized. The between-subjects variable ‘individual/group decision’ had three levels (individual decision, decision in an ad hoc group, and decision in a cohesive group). In the individual decision condition, 25 participants decided, as individual group members, about the reward distributions. While they made this decision in the presence of other group members in the same room, they did not interact with them. For the ad hoc group decision condition, the experimenter formed 25 three-person groups, who were either Klee or Kandinsky groups. The experimenter formed these groups during the experiment, making sure that the group members previously had not known each other. The cohesive group decision condition also had 25 three-person groups. As in the ad hoc group decision condition, all group members in each group were either Klee or Kandinsky fans. Cohesive groups were formed on the basis of pre-existing friendships among the group members. The experimenter made sure that the group members had known each other for more than one year, had attended the same classes, and had spent time together outside school. The experimenter, however, told the participants that they had been assigned to these groups because of their preferences for either Klee or Kandinsky. Each ad hoc and cohesive group had to reach a joint decision about the distribution of rewards, collectively completing one notebook. The groups did not know the identities of other groups and did not have contact with them.

Procedure

The participants had signed up for an experiment, which supposedly was an examination of decision-making behavior. An experimenter (an advanced graduate student of psychology) conducted sessions at a university laboratory over a period of 12 weeks. Each session had three major components as described below: the aesthetic preference test, the assignment to the Klee or Kandinsky group, and the decision about the allocation of rewards.

Aesthetic preference test At the beginning of each experimental session, all participants had to evaluate six color copies of different paintings (three relatively unknown Klee paintings and three relatively unknown Kandinsky paintings). The participants, who had not been informed about the artists before the test, recorded their evaluations in questionnaires. Subsequently, they were led to believe that their questionnaires
served as the basis for their assignments to the Klee or Kandinsky groups. In actuality, however, the experimenter randomly assigned the participants to these groups.

Assignment to the Klee or Kandinsky group

When the experimenter informed the participants about their assignment into the Klee and Kandinsky categories, he told them that he was interested in examining decision-making behavior in the distribution of rewards. Next, the experimenter explained to the participants that they would receive at least DM10 (about US$5), as previously promised, as payment for their participation. Moreover, he said that this amount might be increased because a surplus balance remained on the account for participant expenses. The participants could now distribute this surplus balance among the other participants (but not among themselves or the members of their three-person groups) by completing distribution matrices (the dependent variables are described in detail below) in a notebook. Participants then received this notebook.

Completion of the notebook

Participants in the individual decision condition filled out their notebooks individually. In the two group decision conditions, each group had a separate room where it made its decision following a group discussion. The experimenter reiterated that the participants could not distribute funds to themselves (and members of their three-person group in the group conditions). Both individual group members and groups had to distribute their money to other participants of whom they knew only group membership (i.e. Klee or Kandinsky group). Finally, participants in the two group conditions were additionally presented with a questionnaire about their group, which included the manipulation check on group cohesiveness. At the end of the experimental session, the experimenter carefully debriefed all participants.

Dependent variable: Distribution of rewards

Participants assigned points to an anonymous ingroup member and an anonymous outgroup member on three distribution matrices (Matrices 1 and 3 from Tajfel et al., 1971, Experiment 2; and Matrix 3 from Billig & Tajfel, 1973). These matrices yielded two dependent variables: the total number of points assigned to ingroup and outgroup members (e.g. Diehl, 1989a, 1989b) and distribution strategies (e.g. Grieve & Hogg, 1999).

Total points assigned

Across the matrices, participants could assign between 64 and 256 points to both the anonymous ingroup member and the anonymous outgroup member. More points indicated a more positive treatment of the respective group member. Following the lead of Diehl (1989a, 1989b), we used the total number of points assigned to the ingroup member and the total number of points assigned to the outgroup member in the analyses. The correlation between the number of points assigned to the ingroup member and that assigned to the outgroup member was \(r = .28, p < .05 \). This negative, weak (Cohen & Cohen, 1983) correlation indicated that across matrices the total number of points assigned to the ingroup member and that assigned to the outgroup member were only mildly dependent upon each other (reflecting that the different matrices allowed for different types of point allocations to ingroup and outgroup members).

Distribution strategies

The matrices also allowed for the assessment of the following distribution strategies: (a) assigning the maximum profit to the ingroup (MIP); (b) maximizing the difference between ingroup and outgroup in favor of the ingroup (MD); (c) fairness (treating ingroup and outgroup members equally) (F); and (d) maximizing the joint profit (MJP). In the current study, the focus was on the use of MIP and MD strategies relative to the fairness strategy (F), as, consistent with H2, groups were expected to show a stronger intergroup bias than would individuals. Moreover, consistent with H3, cohesive groups were expected to show a stronger intergroup bias than would ad hoc groups. The relative use of these strategies is assessed by pull scores, which can range from \(-12\) to \(+12\), with
higher scores indicating more discrimination (for details on the computation of pull scores, see Bourhis, Turner, & Gagnon, 1997, and Tajfel et al., 1971).

Manipulation check on cohesiveness

As a manipulation check on cohesiveness, participants in the group conditions responded to a scale that assessed cohesion in their three-person group. The scale consisted of six items that, for example, assessed participants’ judgments of the group atmosphere, the degree of group cooperation, the amount of conflict potential, and their interest in future cooperation and future meetings. All questions were answered on 11-point rating scales, with higher scores indicating more cohesion. We computed the scale score by averaging the responses to the scale items. Cronbach’s alpha was .79.

Results

Manipulation check on cohesiveness

The group cohesion manipulation was successful. A t test revealed a significant difference in responses to the cohesion scale between cohesive groups and ad hoc groups ($t(48) = 3.16, p < .01, \eta^2 = .17$). Cohesive groups reported greater cohesiveness ($M = 8.60$) than did ad hoc groups ($M = 7.55$).

Main analyses

The results of the analysis of variance (ANOVA) were consistent with the expected pattern. The within-subjects effect was significant ($F(1,72) = 18.55, p < .001, \eta^2 = .08$). Consistent with H1, participants assigned more points to ingroup members ($M = 168.47, SD = 15.78$) than to outgroup members ($M = 155.35, SD = 18.38$).

![Graph](image-url)

Figure 1. Cell means of total points assigned as a function of the within-subjects variable ingroup/outgroup and the between-subjects variable individual/group decision.
The between-subjects effect was not significant ($F(2, 72) = .43, ns$). Moreover, as expected, the Ingroup/Outgroup \times Individual/Group Decision interaction term was significant ($F(2, 72) = 3.83, p < .05, \eta^2 = .07$). Figure 1 contains the interaction plot, which shows that the within-subjects effects were stronger for groups (versus individuals).

As specific tests of H2 and H3, we employed ANOVAs that allowed for orthogonal pairwise comparisons of the simple within-subjects effects among the relevant pairs of between-subjects conditions (cf. Kirk, 1995). The first ANOVA compared the simple within-subjects effect of the combined group conditions to that of the individual condition. Consistent with H2, the interaction term was significant ($F(1,73) = 5.12, p < .05, \eta^2 = .07$) (the statistics for the within-subjects effect were $F(1,73) = 10.67, p < .01, \eta^2 = .13$, and for the between-subjects effect $F(1,73) = .87, ns, \eta^2 = .01$). Groups assigned on average 170.14 ($SD = 17.74$) points to other ingroup members and 152.10 ($SD = 20.70$) points to outgroup members, while individual decision makers assigned 165.12 ($SD = 10.40$) points to other ingroup members and 161.84 ($SD = 10.16$) points to outgroup members.

The second ANOVA compared the simple within-subjects effect of the cohesive group condition to that of the ad hoc group condition. Contrary to H3, this ANOVA did not produce a significant interaction effect ($F(1,48) = 1.79, ns, \eta^2 = .04$) (the statistics for the within-subjects effect were $F(1,48) = 17.12, p < .001, \eta^2 = .26$, and for the between-subjects effect $F(1,48) = .90, ns, \eta^2 = .00$). Although the interaction effect was not significant, the differences in the point allocations between the cohesive and ad hoc groups were in the expected direction. Cohesive groups assigned on average more points to ingroup members than did ad hoc groups ($M = 173.04, SD = 21.67$ versus $M = 167.24, SD = 12.46$). Moreover, cohesive groups assigned fewer points to outgroup members than did ad hoc groups ($M = 149.16, SD = 23.56$ versus $M = 155.04, SD = 17.36$). Hence, whereas in cohesive groups the difference in the treatment of ingroup and outgroup members was 23.88 points in favor of the ingroup members, it was only 12.20 points for the ad hoc groups.

To further understand the differences between groups and individual decision makers, we conducted additional analyses of the points allocated to ingroup members and points allocated to outgroup members. These analyses showed that the differences between groups and individual decision makers were a function of their point allocation to outgroup members ($F(2, 73) = 3.15, p < .05$). The combined cohesive groups and ad hoc groups assigned fewer points to outgroup members than did individual decision makers ($t(73) = 2.22, p < .05$) (while cohesive and ad hoc groups did not significantly differ in their outgroup discrimination). Groups and individual decision makers, however, did not differ in their allocation of points to ingroup members ($F(2, 73) = 1.72, ns$).

Distribution strategies To assess the use of discriminatory strategies ($MIP + MD$) relative to the fairness strategy (F), we computed the relevant pull scores ($MIP + MD$ on F). An ANOVA with the independent variable individual/group decision revealed significant differences among individual decision makers, ad hoc groups, and cohesive groups ($F(2, 73) = 4.99, p < .01, \eta^2 = .11$). Consistent with H2, the combined cohesive and non-cohesive groups ($M = 1.95, SD = 3.94$) preferred discriminatory strategies over fairness strategies to a larger degree than did individual group members ($M = -0.64, SD = 2.65$) ($t(73) = 2.96, p < .01$). Contrary to H3, however, cohesive groups ($M = 2.50, SD = 3.63$) did not differ significantly from ad hoc groups in their use of discriminatory strategies ($M = 1.40, SD = 4.23$) ($t(48) = .99, ns$). The difference in the pull scores between the cohesive and ad hoc groups, however, was in the expected direction, such that the pull score was higher for cohesive groups.

Discussion We examined the effects of intragroup interaction and cohesion on behavioral intergroup bias. As expected, groups that made joint
decisions displayed a stronger intergroup bias than did individual group members who acted in isolation. These differences in the intergroup bias between groups and individual group members were a function of increased outgroup discrimination in the group conditions: groups allocated significantly fewer rewards to outgroup members than did individual group members, but groups and individual group members did not differ in their treatment of ingroup members. Furthermore, groups also preferred discriminatory strategies over fair distribution strategies to a significantly greater extent than did individual group members. Cohesive groups were not more extreme in their behavioral intergroup bias than were ad hoc groups, although the results were in the expected direction.

Implications for research

One contribution of our study is that it constructively replicates the findings of Gaertner and Schopler (1998), who also examined the impact of varying degrees of intragroup interaction on intergroup bias. Both studies, using different designs, suggest that intragroup interaction increases differences in the treatment of ingroups and outgroups in the favor of ingroups, while factors that are indicative of interpersonal closeness (e.g., cohesion or self-disclosure) within groups do not necessarily enhance ingroup favoritism beyond the effect of intragroup interaction. While both studies demonstrate the impact of intragroup interaction on intergroup bias, further research is needed to identify the processes that underlie this effect. One possible explanation is that intragroup interaction might lead to an emphasis on categorization processes, for example, by enhancing the salience of category boundaries between ingroups and outgroups. The mere exchange about ingroup and outgroup among ingroup members might increase the perceived validity of these boundaries (cf. Hardin & Higgins, 1996).

Another important contribution of our study is that it not only replicates Gaertner and Schopler’s (1998) research, but also extends it in an interesting way. Gaertner and Schopler found differential treatment of the ingroup and outgroup as ingroup favoritism rather than outgroup discrimination. We found, however, that intragroup interaction led to a decrease in the number of points awarded to outgroup members, providing evidence for outgroup discrimination or derogation, whereas differences in the treatment of ingroup members between individuals and groups were not observed. This difference in the results of the two studies might stem from differences in the studies’ designs. In Gaertner and Schopler’s study, the intragroup interaction occurred before the resource allocation task, which participants completed individually, whereas in our experiment participants in the group conditions jointly discussed and completed the allocation task. Hence, intragroup interaction during the decision phase about the treatment of ingroup and outgroup members might be necessary to produce outgroup derogation, but not ingroup favoritism. Research by Insko et al. (1988) is also supportive of this assumption of the necessity of intragroup interaction during the decision phase for outgroup discrimination. Insko et al.’s research showed that in prisoners’ dilemma games, teams that made joint decisions chose more competitive strategies against other groups than did teams whose group members interacted only prior to the strategic choice, but individually performed the task.

Clearly, future research is needed to provide a direct test of the effects of intragroup interaction during the decision phase on outgroup discrimination. Such research should enhance knowledge about the MGP, in which researchers have mostly found evidence of ingroup favoritism rather than outgroup discrimination (see Brewer, 1979, for a review, and Otten & Moskowitz, 2000, for a recent study). The outgroup discrimination by groups in our study might have resulted from outgroup fear (Gaertner & Insko, 2000; Ng, 1981; Schopler et al., 1993). Ng (1981, see also Locksley, Ortiz, & Hepburn, 1980), for example, found that participants in MGP studies expected discrimination against their group by the outgroup. Two propositions about the potential effects of
group decision making on outgroup fear seem plausible. First, if outgroup fear is generally present in the MGP (Gaertner & Insko, 2000), group decision making about the allocation of points (versus individual decision making) may moderate the effects of outgroup fear on outgroup discrimination (e.g. by enhancing the salience of outgroup fear or by activating a schema of outgroup fear) (cf. Insko & Schopler, 1998). Second, if outgroup fear is not or is barely present in the MGP, group decision making (versus individual decision making) may directly lead to significant levels of outgroup fear (e.g. through processes of mutual reinforcement).

Finally, we did not find strong evidence for an effect of group cohesion on intergroup bias, although the results were in the expected direction. While our findings are consistent with those of Gaertner and Schopler (1998) and Dion (1973), we cannot rule out that the cohesion manipulation contributed to the null finding for two reasons. First, although the manipulation check indicated significant differences in cohesion between the cohesive and ad hoc groups, the level of cohesion appeared relatively high in both conditions. Second, although, as Hogg (1992, p. 102) stated, ‘social and personal attraction may often coexist’, our manipulation might have produced personal attraction rather than social attraction. Self-categorization theory, however, implies that cohesiveness on the basis of social attraction is a better predictor of outgroup discrimination than is cohesiveness on the basis of interpersonal attraction.

Limitations
Like every study, the current study has its limitations. First, past research (e.g. Bornstein et al., 1983) criticized the use of pull scores in minimal group settings. In addition to these pull scores we also analyzed the total sum of points assigned to ingroup and outgroup members (cf. Diehl, 1989a, 1989b). Specifically, we used a within-subjects approach that allowed the isolation of differences in the treatment of the ingroup and outgroup. This approach, however, may also be criticized as within each matrix the number of points assigned to ingroup and outgroup members are not independent of each other. Nonetheless, across the three matrices that we used in our study, the weak correlation of -0.28 between the total number of points assigned to ingroup members and those assigned to outgroup members indicates that the differences in point allocations to ingroup and outgroup members were not a statistical artifact. It is noteworthy that in our study the analyses of the two dependent variables (i.e. pull scores and total points assigned) produced parallel results, indicating their convergent validity as measures of intergroup bias. Future research in minimal group settings might benefit from analyzing both the total number of points assigned and distribution strategies.

Second, the purpose of the current study was to establish effects of intragroup interaction on intergroup bias, but the design of the study did not allow us to isolate the mechanisms that underlie these effects. Although we favor self-categorization-based mechanisms, future research has to address these mechanisms more directly. This would, for example, include direct measures of social attraction. Moreover, in addition to assessing participants’ perceptions of intragroup interactions, these interactions might be videotaped and content coded to better understand their role for intergroup bias. Despite these limitations, our findings are important in that they served the study’s purpose of establishing effects of intragroup interaction on intergroup bias, in particular outgroup discrimination.

In conclusion, the current study modified the minimal group setting by including a group context, using both ad hoc groups and cohesive groups that made group decisions. One contribution of the study is that it documents the existence of more extreme intergroup biases for interacting groups than for individual group members, thus replicating Gaertner and Schopler’s (1998) research. Another contribution of the study lies in the finding of increased outgroup discrimination, but not ingroup favoritism in the group conditions. It might be that intragroup interaction during the
decision phase about the treatment of the ingroup and the outgroup is necessary to produce outgroup discrimination, but not ingroup favoritism. We hope that our study inspires more research into the effects of different kinds of intragroup interaction on intergroup biases.

Acknowledgments
The first two authors contributed equally to the manuscript. We thank Maura-Ann Dietz, Bernd Simon, Scott Tindale, and Jeannette Weston for their comments on earlier versions of this manuscript.

References

Petersen et al. INTRAGROUP FACTORS AND INTERGROUP BIAS

Biographical notes

LARS-ERIC PETERSEN is an assistant professor of social psychology at the University of Halle-Wittenberg, Germany. He received his PhD in psychology from the Christian-Albrechts University in Kiel, Germany, and his postdoctoral qualification (habilitation) from the Martin-Luther University in Halle, Germany. His research interests include social discrimination, intergroup behavior, and self-concept.

JOERG DIETZ is an assistant professor in the Richard Ivey School of Business at the University of Western Ontario. He earned his PhD in organizational behavior at Tulane University’s A. B. Freeman School of Business. His current research interests include employee–customer linkages in service organizations, contextual models of workplace aggression, and prejudice and discrimination in the workplace.

DIETER FREY is a full professor for social and organizational psychology at the University of Munich, Germany. He received his PhD in psychology in Mannheim. In 1988/89, he was Theodor-Heuss-Professor at the Graduate Faculty of the New School for Social Research in New York. His research interests are: basic research in social psychology as well as the application of this research in organizations.