Preferences for and evaluation of self-relevant information depending on the elaboration of the self-schemata involved

DAGMAR STAHLBERG1*, LARS-ERIC PETERSEN2 and DIRK DAUENHEIMER1
1University of Mannheim, Germany
2University of Halle-Wittenberg, Germany

Abstract

Previous findings have shown that some reactions (e.g. satisfaction with feedback) are guided by self-enhancement theory, whereas other reactions (e.g. perceived feedback accuracy) have been shown to follow predictions of self-consistency theory. The Integrative Self-Schema Model (ISSM) assumes that these effects should be moderated by the elaboration of the self-schema involved: This assumption was tested in an experimental study: 72 participants received fictitious feedback on different personality dimensions allegedly based on an adjective checklist. This feedback was either consistent with self-perceptions, more positive than expected, or more negative than expected, and addressed highly elaborated (schematic) or less elaborated (aschematic) personality dimensions. Satisfaction, feedback accuracy and interest in further information were analysed as dependent variables. The experimental results clearly confirmed the hypotheses derived from the ISSM for satisfaction and perceived feedback accuracy. A self-consistency effect regarding perceived feedback accuracy was found only for feedback on schematic dimensions but was attenuated on aschematic dimensions. A self-enhancement effect regarding satisfaction was found only on aschematic dimensions. This finding was reversed on schematic dimensions. Finally, interest in further information did not follow the predictions made by the ISSM. Copyright © 1999 John Wiley & Sons, Ltd.

During the last four decades of self-concept research, one of the most intensely discussed questions has been how people react towards self-concept relevant feedback (see Swann, Pelham, & Krull, 1989). How do they respond to self-concept

*Correspondence to: Dr Dagmar Stahlberg, Sozialpsychologie, Universität Mannheim, 68131 Mannheim, A5, Germany. e-mail: dstahlberg@sowi.uni-mannheim.dl
Contract grant sponsor: Deutsche Forschungsgemeinschaft; Contract grant number: Sta 422/3-1.
discrepant positive and negative information or self-concept consistent information? Are individuals more satisfied with positive feedback, or do they judge self-consistent information as more accurate? Furthermore, what kind of information receives the most interest and is actively sought or avoided? Basic answers to these questions have been offered from two theoretical perspectives: self-enhancement theory and self-consistency theory. These theoretical positions make contradictory assumptions regarding reactions to self-relevant feedback of differing valences. These approaches will be described below in more detail, together with a new theoretical approach—the Integrative Self-Schema Model (ISSM, Petersen, 1994; Petersen, Stahlberg, & Dauenheimer, 1996; Stahlberg, Petersen, & Dauenheimer, 1994).

SELF-ENHANCEMENT THEORY AND SELF-CONSISTENCY THEORY

Self-enhancement theory assumes that people possess a motive to protect or even enhance their self-esteem (Brown, 1986; Brown, Collins, & Schmidt, 1988; Shrauger, 1975). Individuals are therefore expected to prefer positive feedback about the self and also to react more positively to such feedback. Self-consistency theory can be traced back to Heider’s (1944) balance theory and Festinger’s (1957) theory of cognitive dissonance. These theories postulate that persons strive towards cognitive consistency between their attitudes, beliefs, values and perceptions of own behaviour. More specifically, self-consistency approaches assume that individuals will prefer feedback about the self that is consistent with existing self-knowledge, even if this feedback confirms a negative self-concept. Furthermore, people are expected to react more positively towards self-consistent feedback than they would even to information that would be more flattering (positive feedback) (see Shrauger, 1975). More recently, the self-consistency idea has been the focus of renewed interest under the label of self-verification and self-confirmation in the research of Swann (1983, 1985, 1990) and Andrews (1989), respectively.

Since the late 1950s, questions of selective preferences for certain kinds of self-relevant feedback (positive or self-consistent) and related empirical findings have been heatedly discussed by the proponents of these two theoretical positions (e.g. Dittes, 1959; Deutsch & Solomon, 1959). In a review of studies in this area in 1975, Shrauger proposed that satisfaction with feedback follows self-enhancement theory, whereas individual assessments of feedback accuracy are in line with the predictions of the self-consistency approach. A great deal of empirical evidence, using various measures, supports Shrauger’s assumptions (Jussim, Yen, & Aiello, 1995; Moreland & Sweeney, 1984; Swann, Griffith, Predmore, & Gaines, 1987; Sweeney & Wells, 1990). On the one hand, high and low self-esteem people were more satisfied, less depressed, anxious and hostile, and reported more positive feelings after positive than after negative feedback, supporting the self-enhancement view. On the other hand, people with low self-esteem rated the feedback as less accurate and the evaluator as less competent after receiving positive than they did after negative feedback, whereas the opposite was true for people high in self-esteem. These results clearly support self-consistency theory.

Finally, no clear conclusion can be drawn regarding the two motives discussed above in connection with selective exposure to self-relevant information of a given
valence: Whereas some findings support the assumptions of self-enhancement theory (Frey, 1981; Frey & Stahlberg, 1986; Meyer & Starke, 1982), other results can be better understood in terms of self-consistency theory (Coyne, Kessler, Tal, Turnbull, Wortman, & Greden, 1987; Curtis & Miller, 1986; Stahlberg, 1988; Swann & Read, 1981a,b). Although selective exposure to information might be especially interesting as a behaviourally oriented response, even less is known about this kind of response. Therefore, we propose a moderating variable that should be relevant for selective exposure.

One of the goals of this study is to simultaneously analyse satisfaction with feedback and perceived accuracy of self-relevant feedback as well as interest in further information. Simultaneous analyses of these different kinds of reactions are necessary to test the hypothesis that different kinds of reactions to self-relevant feedback (satisfaction, perceived accuracy and interest in further information) are affected by different motives (self-esteem enhancement versus self-consistency). However, separate from the kind of reaction, other variables may influence reactions to self-relevant information. The ISSM assumes that the cognitive elaboration of the self-concept dimension will also moderate satisfaction, feedback accuracy and interest in further information.

THE INTEGRATIVE SELF-SCHEMA MODEL

The ISSM (Petersen, 1994; Petersen, Stahlberg, & Dauenheimer, 1996; Stahlberg, Petersen, & Dauenheimer, 1994) further specifies the conditions under which principles of self-enhancement or self-consistency are expected to dominate reactions to self-relevant information. The ISSM is based on the work of Markus and her colleagues on self-schemata (Markus, 1977; Markus & Sentis, 1982; Markus & Wurf, 1987). ‘Self-schemata are cognitive generalisations about the self, derived from past experience, that organise and guide the processing of self-related information . . .’ (Markus, 1977, p. 64). On some self-concept dimensions, people may possess highly differentiated and well-articulated self-schemata (schematic dimensions), whereas on other dimensions they may lack such clearly defined and well-articulated self-knowledge (aschematic dimensions).

In the original studies of Markus and her colleagues the classification of a certain self-concept dimension as schematic or aschematic was made by combining different criteria, mainly the criteria of extremity and importance. For example, Markus (1977) classified those participants as schematics who (1) either labelled themselves as extremely dependent (points 8–11 on an 11-point scale) or extremely independent (points 1–4 on the same scale) and (2) who rated this dimension as extremely important (points 8–11 on an 11-point scale). Other authors added the criterion of certainty (see Fiske & Taylor, 1991; Pelham, 1991), implying that on schematic dimensions that are clearly defined and well articulated, self-descriptions can be made with great certainty. In sum, schematic self-concept dimensions are characterised by an extreme self-rating, a high certainty regarding this rating, and a high importance of the rated dimension.

The ISSM states that the elaboration of self-schemata will moderate whether self-enhancement principles or self-consistency motives dominate the reactions to
self-relevant feedback. This assumption is based on the following ideas: Schematic dimensions occupy a central position in the cognitive system. They should be related to a great number of other self-relevant cognitions (abilities and other personal attributes as well as experiences, personal goals, etc.) and therefore possess a high resistance to change (see e.g. Festinger, 1957). This implies that on schematic dimensions, inconsistent, counter-schematic information should be resisted. An acceptance of such counter-schematic information would lead to a greater number of other inconsistencies in the existing cognitive system. On the other hand, schema-consistent information can be accepted without causing any cognitive problems. The ISSM therefore assumes that on schematic dimensions, participants will react most favourably towards self-consistent information, thereby confirming self-consistency predictions. A study by Markus (1977, Study 2) supports this assumption. In this study schematic participants were less willing to accept self-inconsistent information as self-diagnostic than aschematic participants.

Turning now to aschematic dimensions, the assumptions of the ISSM favour the self-enhancement motive to dominate reactions to self-relevant feedback. Aschematic dimensions, by definition, do not possess a great number of strong associations with other self-relevant cognitions. This implies a very low resistance to change. In other words, aschematic dimensions might easily be changed in the direction of a more flattering self-image. The ISSM assumes that people will prefer to change their self-conceptions in the direction of an ideal self instead of verifying a self-schema that is not yet well articulated. This assumption implies the primacy of the need for self-esteem protection and enhancement: Individuals are supposed to react positively towards self-enhancing information and actively search for this kind of information whenever the resistance to change an existing self-schema is low. Studies by Dutton (1972) and Regan (1976) support these assumptions. In both studies, participants who did not possess well-articulated and stable self-conceptions on a certain dimension, tended to process self-relevant information according to the principles of self-esteem enhancement and protection.

Taking into account the previous findings on the dominance of self-enhancement motives concerning satisfaction with feedback and the same dominance of the self-consistency motives regarding accuracy evaluations, the following hypotheses can be derived from the ISSM:

Satisfaction

1. In general, satisfaction with feedback will follow the predictions of self-enhancement theory: People will react more positively to information that deviates from their self-conceptions in a positive direction (i.e. in the direction of an ideal self) compared to self-consistent information and information that deviates from their self-conceptions in a negative direction.
2. This general pattern will be more pronounced on aschematic dimensions than on schematic dimensions.

Perceived accuracy

3. In general, accuracy evaluations of feedback will follow the predictions of self-consistency theory: People will react more positively to self-consistent information than to self-discrepant information even if this information is positive.
4. This general pattern will be more pronounced on schematic dimensions than on aschematic dimensions.
Interest in further information

(5) On aschematic dimensions, people will react to self-relevant information in line with self-enhancement predictions: They will be more interested in further information on a dimension where previous feedback was positive rather than negative or self-consistent.

(6) On schematic dimensions, people will react to self-relevant information in line with self-consistency predictions: They will be more interested in further information on a dimension where previous feedback was self-consistent rather than positive or negative.

METHOD

Overview

The experiment consisted of a 2 (elaboration of self-schemata: schematic versus aschematic) × 3 (feedback: positive versus self-consistent versus negative) within-subject design with satisfaction and perceived accuracy as well as preference for further information as dependent variables. The elaboration of self-schemata was operationalized by combining participants’ self-descriptions on the dimension in question (extremity of self-description), the certainty of this judgement and the importance attributed to this dimension into one index of self-concept elaboration. Feedback was given for three schematic and three aschematic dimensions, respectively. Self-consistent feedback was nearly identical to participants’ actual self-descriptions. The positive feedback deviated from self-descriptions in the direction of the ideal self, whereas negative feedback deviated in the opposite direction.

Participants

Forty-seven female and 25 male students from the University of Kiel and the University of Halle (Germany) participated in the experiment, the majority of them being first-semester psychology students. They received experimental credit for their participation.

Procedure

Participants expected to participate in a study to validate a new computer-based testing-system designed to diagnose personality characteristics. All data were gained by direct, participant–computer interaction. A maximum of four participants per time slot worked independently on one of the four computers in the laboratory. First, participants were asked to answer some personal questions concerning age, gender, etc. Afterwards, ten personality dimensions were briefly described. To give an example, the dimension of ‘achievement orientation’ was described as follows: ‘A person who is highly achievement-oriented prefers to work hard. Without external reinforcement she/he pursues ambitious goals and determinedly tries to reach them.’
The other dimensions were autonomy, depression, assertiveness, femininity, masculinity, inferiority feelings, self-confidence, self-centeredness, and spontaneity. The order of presentation for these ten dimensions was randomized separately for each participant. The following paragraph describes the different questions which were then asked regarding these ten dimensions.

Elaboration of self-schemata

The basis for the differentiation of schematic and aschematic self-concept dimensions consisted of:

- The extremity of self-descriptions on each of the ten dimensions presented (‘How would you rate yourself on the personality dimension just presented?’ 0 = very low to 100 = very high)
- The certainty of these self-descriptions (‘How certain are you about this self-description?’ 0 = not at all certain to 10 = extremely certain) and
- The personal importance of these dimensions (‘How important is this dimension for you?’ 1 = not at all important to 10 = extremely important).

On the basis of these ratings, an index of self-schema elaboration was computed. First, the extremity ratings were recoded as follows, in order to give all three ratings a similar weight: 0 or 100 = 10, 10 or 90 = 8, 20 or 80 = 6, 30 or 70 = 4, 40 or 60 = 2 and 50 = 0 (all scores in between were interpolated). The final index score was computed by summing up the three rating-scores, resulting in possible values from 0 = not at all elaborated to 30 = extremely elaborated. Starting from this index score (computed for every participant on all dimensions) the dimensions with the three highest index values per participant were labelled ‘schematic’, whereas the dimensions with the three lowest scores were labelled ‘aschematic’. Altogether, the different dimensions were nearly equally often classified as ‘schematic’ and as ‘aschematic’ (there was never any occurrence of more than two thirds of participants being schematic or aschematic on a certain dimension).

After the participants had provided these different self-ratings for all ten dimensions, they worked on the allegedly real diagnostic system. Their task was to decide whether each of 104 attributes was self-descriptive or not. The attributes were taken from the Gough and Heilbrun Adjective Check List (1965) and were translated into German by the authors. The different adjectives corresponded to the ten personality dimensions on which the self-ratings had been given in the first part of the experiment. For each dimension, ten or eleven adjectives were presented (for example, for the dimension ‘achievement orientation’ the adjectives ‘ambitious, capable, conscientious, energetic, industrious, opportunistic, easygoing, irresponsible, leisurely, shiftless’ were provided). The participants were led to believe that these self-descriptions would form the basis for the personality feedback to be given later in the experiment.

During the next part of the experiment participants received fictitious feedback on six of the ten personality dimensions that met the criteria of high or low self-elaboration as described above. Within each category (schematic/aschematic), each dimension was randomly assigned to either the positive, negative or consistent feedback condition. The feedback scores were given with the following instructions: You
have received a test score of . . . points on the dimension of (e.g.) achievement orientation. The exact feedback score was determined as follows.

Feedback

The feedback given was based on individual self-ratings on the ten dimensions and ratings of the ideal self. The self-ratings (extremity ratings) are described above. The following statement had to be completed for each dimension to assess the ideal self: ‘Regarding a potential change in the future I would like to be. . . .’ (response alternatives for the dimension achievement orientation: far more/more achievement-oriented, far less/less achievement-oriented). Self-consistent feedback consisted of a score that deviated only minimally from the self-description (3 points on the scale from 0 to 100). A positive or negative feedback was given by a score that deviated 23 points from the self-rating in the direction of the ideal self or in the direction opposite to the ideal self, respectively.1 The kind of feedback given for each schematic or aschematic self-concept dimension was randomly assigned.

After each feedback score was presented, participants had to answer several questions concerning their immediate reaction to this feedback.

- **Dependent variable: Satisfaction.** Participants were asked: ‘How satisfied are you with your test score?’ (1 = not at all satisfied to 9 = extremely satisfied).
- **Dependent variable: Perceived accuracy.** Participants were asked: ‘How accurate do you think your test score was?’ (1 = not at all accurate to 9 = extremely accurate).
- **Dependent variable: Interest in further information.** Participants were asked: ‘How interested are you in further information about yourself on this dimension?’ (1 = not at all interested to 9 = extremely interested).

At the end of the experimental session, all participants were carefully debriefed, stressing the fictitious nature of the feedback by means of a process-debriefing (see Ross, Lepper, & Hubbard, 1975). Participants were also asked to elaborate on their hypotheses about the experiment. It turned out that the cover story was

1The feedback scores are based on the results of a pilot study. In accordance with the main study, participants were given ten personality attributes and asked to rate the extent of their real self and ideal self on each dimension (0 = very low to 100 = very high). Next, they were told to mark the ranges in which feedback would be viewed as positive, consistent, and negative. The distance from the range marks to the real self-view in the direction or in the opposite direction of the ideal self-view was chosen as the dependent variable. Participants rated feedback as positive if it exceeded their real self-view between 5 and 25.5 points in the direction of their ideal self-view on the scale. Participants judged feedback as negative when the distance scores fell between −9.5 to −45 in the opposite direction from their ideal self-view, again using the real self-view as a reference point. Feedback was assessed as consistent when distance scores ranged from −9.5 in the opposite direction of their ideal self-view to 10 in the direction of their ideal self-view, again using the real self-view as a reference point. The results showed that participants could differentiate between positive, consistent, and negative feedback, with only a small overlap between consistent and positive feedback. Additionally, schematic and aschematic dimensions did not differ in the marked regions for positive, consistent, and negative feedback. Pre-testing has led to the choice of a 23-point discrepancy for the positive and negative feedback. This difference was selected because (a) for most pre-tested participants this was a score that was clearly defined as being positively and negatively discrepant to the current self-concept and (b) in most cases it allowed us to remain within the limits given by the scale endpoints. Nevertheless, in a few cases (7%) this procedure was not applicable (the self-ratings were already very close to the scale endpoints). In these cases the feedback deviated less than 23 points from the self-ratings. These cases were distributed non-systematically over the different experimental conditions.
completely convincing and none of the participants had been conscious of the fictitious nature of the feedback.

RESULTS

The three dependent variables ‘satisfaction’, ‘perceived accuracy’ and ‘interest in further information’ were each subjected to a 3 (feedback: positive versus self-consistent versus negative) × 2 (elaboration of self-schemata: schematic versus aschematic) ANOVA with repeated measurement on both factors. We performed planned comparisons (t-tests) for our specific, theoretically derived hypotheses. Further pairwise comparisons were based on Scheffé-tests (Scheffé, 1963).

Satisfaction

Means regarding this dependent variable can be seen in Table 1. The ANOVA revealed a significant main effect for feedback, $F(2,142) = 35.43, p < 0.001$. Participants who received negative feedback ($M = 4.47$) were less satisfied with this information than participants who were confronted with self-consistent feedback ($M = 6.39, t(71) = 8.18, p < 0.001$) or positive feedback ($M = 6.23, t(71) = 6.34, p < 0.001$), with the satisfaction scores in the latter two conditions not differing significantly. This main effect was qualified by an interaction, $F(2,142) = 6.92, p < 0.001$: On aschematic dimensions, positive feedback ($M = 6.14$) led to greater satisfaction than consistent feedback ($M = 5.60, t(71) = 1.86, p < 0.05$) or negative feedback ($M = 4.42, t(71) = 5.61, p < 0.001$), whereas on schematic self-concept dimensions, participants

<table>
<thead>
<tr>
<th>Self-schema elaboration</th>
<th>Positive</th>
<th>Feedback Consistent</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schematic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>6.32a</td>
<td>7.17</td>
<td>4.52</td>
</tr>
<tr>
<td>SD</td>
<td>2.44</td>
<td>2.08</td>
<td>2.62</td>
</tr>
<tr>
<td>Aschematic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>6.14</td>
<td>5.60</td>
<td>4.42</td>
</tr>
<tr>
<td>SD</td>
<td>2.00</td>
<td>1.98</td>
<td>2.15</td>
</tr>
</tbody>
</table>

aValues can range from 1 = not at all satisfied to 9 = absolutely satisfied

2Although the dependent variables showed significant correlations (affective and cognitive reaction: $r = 0.57$, affective reaction and interest in further information: $r = -0.04$ and cognitive reaction and interest in further information: $r = 0.08$) three ANOVA were computed because of the special data patterns predicted for each dependent variable. This procedure was further justified since an ANOVA with the ‘kind of dependent variable’ as an additional factor yielded significant interactions of the factors ‘feedback’ and ‘kind of dependent variable’ ($F(4,284) = 10.07, p < 0.001)$ and of all three factors ($F(4,284) = 4.90, p = 0.001$). Both interactions were also significant when only analyzing the two dependent variables affective and cognitive reaction ($F(2,142) = 4.61, p = 0.012$) and ($F(2,142) = 5.52, p = 0.005$).
were more satisfied with self-consistent feedback ($M = 7.17$) than with positive feedback ($M = 6.32, t(71) = 2.31, p < 0.05$) or with negative feedback ($M = 4.52, t(71) = 4.36, p < 0.001$).

Perceived accuracy

Table 2 summarizes the means for the variable ‘perceived accuracy’. Again, the ANOVA revealed a main effect for feedback, $F(2,142) = 13.62, p < 0.001$. In general, participants evaluated the feedback as being more valid when self-consistent ($M = 6.93$) rather than when positive ($M = 6.16, t(71) = 4.20, p < 0.001$) or negative ($M = 5.79, t(71) = 4.91, p < 0.001$) feedback was provided. The interaction effect was also significant, $F(2,142) = 4.02, p < 0.05$. Whereas on schematic dimensions, self-consistent information ($M = 7.57$) was estimated to be more valid than positive ($M = 6.25, t(71) = 4.73, p < 0.001$) or negative information ($M = 5.80, t(71) = 5.31, p < 0.001$), no comparable differences were found between feedback conditions on aschematic dimensions (all p's = n.s.).

Interest in further information

Means regarding this dependent variable are shown in Table 3. The ANOVA revealed a main effect for elaboration of self-schemata, $F(1,71) = 17.30, p < 0.001$. In general, participants were more interested in further information about themselves on

Table 3. Mean rating of the dependent variable ‘How interested are you in further information about yourself on this dimension?’ (interest in further information) as a function of self-schema elaboration and feedback

<table>
<thead>
<tr>
<th>Self-schema elaboration</th>
<th>Positive</th>
<th>Feedback</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Consistent</td>
<td></td>
</tr>
<tr>
<td>Schematic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>7.53</td>
<td>7.40</td>
<td>7.10</td>
</tr>
<tr>
<td>SD</td>
<td>1.82</td>
<td>2.04</td>
<td>2.39</td>
</tr>
<tr>
<td>Aschematic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>6.31</td>
<td>6.03</td>
<td>7.00</td>
</tr>
<tr>
<td>SD</td>
<td>2.45</td>
<td>2.39</td>
<td>2.08</td>
</tr>
</tbody>
</table>

aValues can range from 1 = not at all interested to 9 = extremely interested
schematic dimensions than on aschematic dimensions ($M = 7.34$ versus $M = 6.45$). No main effect for feedback was found. But again a significant interaction emerged, $F(2,142) = 5.96$, $p < 0.01$. On schematic dimensions, interest in further information was independent of whether positive, negative or self-consistent feedback had been provided (all pairwise comparisons, ps = n.s.). In contrast, on aschematic dimensions a greater interest was shown in further information about dimensions on which negative feedback had been given before: The reported interest in this feedback condition ($M = 7.00$) differs significantly from the interest in the self-consistent feedback condition ($M = 6.03$, $p < 0.05$) and from the interest in the positive feedback condition ($M = 6.31$, $p < 0.05$).

DISCUSSION

This study tested predictions concerning reactions to self-relevant feedback derived from self-enhancement theory, self-consistency theory and the Integrative Self-Schema Model. The results for the variable ‘satisfaction’ supported the prediction of the Integrative Self-Schema Model. Although, in general, reactions were not more positive after positive compared to consistent feedback, as Shrauger would have predicted, this effect was clearly confirmed for aschematic dimensions. Participants reacted more positively to positive feedback whenever their self-conceptions on the feedback dimension were not well-articulated and not highly elaborated. On the contrary, on highly elaborated self-concept dimensions participants reported greater satisfaction with consistent self-relevant feedback than with positive feedback.

The data for the variable ‘perceived accuracy’ confirms both our hypotheses. Overall, participants attributed a higher validity to the self-consistent feedback compared to positive feedback, thus confirming the assumption that self-consistency principles dominate accuracy evaluations. Furthermore, as postulated by the ISSM, reactions to feedback of different valences were modified by the elaboration of the self-schema dimensions involved. Whereas the applicability of self-consistency predictions could be clearly confirmed for schematic dimensions, no preference for self-consistent feedback was found for aschematic dimensions. The tendency to attribute the highest accuracy to self-consistent information is attenuated on dimensions where little well-articulated self-knowledge exists.

At this point it should be added that a more positive reaction to self-consistent compared to positively self-discrepant information on schematic dimensions must not necessarily be motivationally driven. It might well be explained in non-motivational terms. High certainty on a self-assessment might be accompanied by derogating any source that conveys self-discrepant feedback as incredible, without any drive to behave self-consistently being involved. Furthermore, this possible derogation of self-discrepant feedback may also explain the less positive reactions to positive feedback when self-concept dimensions are highly elaborated. A clear distinction between a motivational explanation of the consistency effect and a cognitive explanation is not possible on the basis of the data presented here and must therefore be postponed for future research.

Finally, the results concerning further interest in self-relevant information do not follow the theoretical predictions. In general, participants were more interested
in further information about themselves on schematic dimensions compared to aschematic dimensions. On the one hand, this may be somewhat surprising because schematic dimensions are defined by extreme self-perceptions that are held with high certainty. Further information should therefore prove to be less relevant to existing self-images. On the other hand, being schematic and therefore knowing a lot already about a certain dimension may—as one of our reviewers suggested—also lead participants to realize how much there is still to learn, thus being more receptive to new information. Besides such a cognitive explanation one may also think of a more motivational one. Schematic dimensions are conceptualized as being more important to the individual. With this in mind, it becomes self-evident that participants should be more interested in further feedback on dimensions that are schematic compared to aschematic. Taken together, the different components of the concept of elaboration of self-schemata might have different implications for interest in further information. Markus, Smith, and Moreland (1985) have outlined that the integration of different components into one basic theoretical concept may sometimes cause problems when interpreting results. The results may either be the outcome of the affective meaning of a specific self-schema (e.g. its importance) or the outcome of the level of knowledge associated with this dimension (e.g. its extremity) (see also the empirical work of Pelham, 1991). To explain the results of this study, it must be assumed that interest in further information was mainly driven by the importance component. A very recent study supports this interpretation of our results. Dauenheimer (1996) reports that interest in further information was very low on self-concept dimensions associated with a high extremity and certainty, on the one hand, and a low importance, on the other.

Another important finding was that on schematic dimensions, neither positively discrepant information nor self-consistent information received systematically greater interest scores. However, the same participants preferred to learn more about self-concept dimensions in the negative feedback condition than in the self-consistent and the positive feedback condition whenever the corresponding self-conceptions were aschematic. This preference for further information in the negative feedback condition clearly contradicts the predictions of all theoretical positions discussed. Stressing again the importance component, one may argue that regarding aschematic dimensions which are not perceived to be very important, participants might be mostly interested in information that is highly discrepant to expectations or otherwise especially salient. Swann (1985) has mentioned that people in general tend to expect positive instead of negative feedback and therefore negative feedback might be more attention-grabbing. This interpretation of the data is also supported by a non-significant tendency of participants to be more interested in positively self-discrepant information compared to self-consistent information. At this point in time, however, these interpretations of the findings with regard to the further interest in information variable can only be speculative, and future research will have to clarify the possible mediating mechanisms to which these results can be attributed.

A further question that could be raised is whether consistent feedback may at the same time be perceived as positive feedback, especially on schematic dimensions. As mentioned above, people describe themselves as more extreme on schematic dimensions. Thus, consistent feedback on schematic dimensions could also be perceived as positive. This question was partially addressed in our pilot study (see footnote above). In this pilot study participants were asked to mark the ranges in which they perceive
feedback as positive, consistent, and negative. The results demonstrated that participants could differentiate between positive, consistent, and negative feedback. People reported only a small overlap between consistent and positive feedback (between 5 and 10 points in the direction of the ideal self). Thus, although people perceive a small range of feedback scores as consistent and positive, most feedback scores are perceived as only consistent (−9.5 or 4) or positive (11 to 25.5). Furthermore, schematic and aschematic dimensions did not differ in their marked ranges. Based on the results of the pilot study, participants in the main experiment received a feedback score that deviated 23 points from the self-rating in the direction of the ideal self (positive feedback) or a score that deviated only minimally from the self-description (consistent feedback). By means of these feedback scores we feel that the probability that participants perceived feedback as consistent and positive at the same time is low.

To summarize, the predictions of the ISSM have been clearly confirmed for satisfaction with feedback and accuracy evaluations. Predictions concerning the variable ‘interest in further information’ were not supported by the data. Nevertheless, the proposed differentiation between schematic and aschematic self-concept dimensions has been proven useful in understanding these results. The ISSM therefore identifies one more important variable—the elaboration of a specific self-schema—that moderates the influence of the motives self-esteem protection/self-esteem enhancement and self-consistency on reactions to self-relevant information.

In future research a differentiation between the epistemic components of self-schema elaboration (extremity and certainty of self-knowledge) and affective components (importance of the self-schema) might be promising, as the interpretation of the results concerning the variable interest in further information has shown. The joint effects of different moderating variables might also be of further interest (see Sedikides & Strube, 1995). Finally, in the present study, reactions to self-relevant feedback have been analyzed depending on the differences between actual self-ratings and feedback (consistent, positively versus negatively discrepant). It might also be interesting for future research to take differences between actual self-ratings and ‘possible selves’ into account (see Dauenheimer, Stahlberg, & Petersen, 1994; Swann & Schroeder, 1995).

ACKNOWLEDGEMENTS

This research was supported by a grant from the Deutsche Forschungsgemeinschaft (Sta 422/3-1) to the first author. We thank Aaron Wichman for helpful comments on a previous draft.

REFERENCES

