Investigation of mechanical and fracture mechanical properties of elastomers filled with precipitated silica and nanofillers based upon layered silicates

Katrin Reincke *, Gert Heinrich **, Wolfgang Grellmann *

* Martin Luther University of Halle-Wittenberg, Department of Engineering Science, Institute of Materials Science, D-06099 Halle, Germany
** Continental AG, Strategic Technology Advanced Materials, Jaedekamp 30, D-30419 Hannover, Germany

The presentation deals with mechanical and fracture mechanical investigations of filled natural rubber vulcanizates with varying filler contents (5 to 70 phr). Two different fillers were used: precipitated silica and a nanofiller based upon organophilic layered silicates. In both cases, silane was added to realize a certain degree of filler–polymer coupling.

Focus of the examinations was to determine the influence of filler type and filler content on the crack toughness as well as to quantify a possible anisotropy of crack initiation and propagation behavior by punching the specimens from plates in two directions. For this purpose, cyclic TFA tests, instrumented tensile-impact tests and quasi-static fracture mechanics tests were carried out. Results of these tests are tearing energy values T, crack toughness values J_d and crack resistance curves with certain crack initiation and propagation parameters that describe the stable crack propagation behavior. By using these parameters, a grading of the vulcanizates regarding their cracking properties becomes possible. Furthermore, sample geometry (in)dependence and several applications of J and T as fracture criteria for elastomers are discussed.